XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: DEEP REINFORCEMENT LEARNING FOR QUADROTOR TRAJECTORY CONTROL IN VIRTUAL ENVIRONMENTS Autor: GUILHERME SIQUEIRA EDUARDO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
WOUTER CAARLS - ADVISOR
Nº do Conteudo: 54178
Catalogação: 12/08/2021 Liberação: 07/05/2022 Idioma(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=54178&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=54178&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.54178
Resumo:
Título: DEEP REINFORCEMENT LEARNING FOR QUADROTOR TRAJECTORY CONTROL IN VIRTUAL ENVIRONMENTS Autor: GUILHERME SIQUEIRA EDUARDO
Nº do Conteudo: 54178
Catalogação: 12/08/2021 Liberação: 07/05/2022 Idioma(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=54178&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=54178&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.54178
Resumo:
With recent advances in computational power, the use of novel, complex
control models has become viable for controlling quadrotors. One such method
is Deep Reinforcement Learning (DRL), which can devise a control policy
that better addresses non-linearities in the quadrotor model than traditional
control methods. An important non-linearity present in payload carrying air
vehicles are the inherent time-varying properties, such as size and mass,
caused by the addition and removal of cargo. The general, domain-agnostic
approach of the DRL controller also allows it to handle visual navigation,
in which position estimation data is unreliable. In this work, we employ a
Soft Actor-Critic algorithm to design controllers for a quadrotor to carry out
tasks reproducing the mentioned challenges in a virtual environment. First,
we develop two waypoint guidance controllers: a low-level controller that acts
directly on motor commands and a high-level controller that interacts in
cascade with a velocity PID controller. The controllers are then evaluated
on the proposed payload pickup and drop task, thereby introducing a timevarying
variable. The controllers conceived are able to outperform a traditional
positional PID controller with optimized gains in the proposed course, while
remaining agnostic to a set of simulation parameters. Finally, we employ the
same DRL algorithm to develop a controller that can leverage visual data to
complete a racing course in simulation. With this controller, the quadrotor is
able to localize gates using an RGB-D camera and devise a trajectory that
drives it to traverse as many gates in the racing course as possible.
Descrição | Arquivo |
COMPLETE |