$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC | MARC |



Título: PRECODING, COMBINING AND POWER ALLOCATION TECHNIQUES FOR RATE-SPLITTING-BASED MULTIUSER MIMO SYSTEMS
Autor: ANDRÉ ROBERT FLORES MANRIQUE
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  RODRIGO CAIADO DE LAMARE - ADVISOR
Nº do Conteudo: 53557
Catalogação:  06/07/2021 Idioma(s):  ENGLISH - UNITED STATES
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=53557@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=53557@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.53557

Resumo:
Multiple-antenna systems employ different signal processing techniques at both ends of the communication to exploit the spatial dimensions and serve multiple users simultaneously in the same time-frequency domain. In this way, high spectral efficiency can be reached without the need of extra bandwidth. However, such gain depends on a highly accurate channel state information at the transmitter (CSIT). Perfect CSIT allows the system to suppress the multi user interference (MUI), which is the main responsible of the performance degradation. Nonetheless, assuming perfect CSIT is rather optimistic since the estimation procedure, quantization errors and delays of real system lead to CSIT uncertainties. In this context, rate splitting (RS) has arisen as a promising technique to deal with CSIT imperfections. Basically, RS splits the data into a common stream and private streams and then superimposes the common stream on top of the private streams. This thesis proposes several processing techniques which further enhance the benefits of RS systems. We consider the downlink (DL) of a wireless communications system, where the transmitter sends independent messages to each receiver. The ergodic sum rate (ESR) is adopted as the main metric to evaluate the performance of the system. Different from conventional RS works, we consider that the users are equipped with multiple antennas. This allows us to implement stream combiners for the common stream at the receivers. The implementations of the stream combiners improves the common rate performance, which is a major problem of RS systems since the common rate is limited by the performance of the worst user and can be heavily degraded. In this work, three different stream combiners are proposed along with analytical expressions to compute their sum rate performance. Specifically, the combiners are derived employing the min-max, maximum ratio combining (MRC), and minimum mean square error (MMSE) criteria. The min-max criterion selects at each user the best receive antenna to decode the common symbol. The MRC criterion aims at maximizing the SNR when decoding the common symbol. Finally, the MMSE criterion minimizes the squared difference between the common symbol and the received signal. So far, RS has been predominantly considered with channel inversiontype linear precoders. Therefore, this motivates us to investigate the performance of RS with non-linear precoders. For this purpose, we employ different architectures of the Tomlinson-Harashima precoder (THP) which are based on the zero-forcing (ZF) and MMSE precoders. We then propose a multi-branch (MB) algorithm for the proposed RS-THP, which creates several transmit patterns and selects the best for transmission. This pre-processing techniques further enhance the sum rate obtained since the performance of THP is dependent on the symbol ordering but also increases the computational complexity. Analytical expressions to calculate the sum rate of the proposed techniques are derived through statistical evaluation of key parameters. Finally, we propose four different adaptive power allocation techniques, which are characterized by their low computational complexity. Two of them are designed for conventional SDMA systems whereas the other two are intended for RS systems. One major objective of the proposed algorithms is to perform robust power allocation capable of dealing with the detrimental effects of imperfect CSIT. It is important to mention that power allocation in RS systems is one of the critical tasks that should be carefully performed. If the power is not properly allocated the performance of RS systems is heavily degraded and conventional architectures such as SDMA and NOMA could perform better. However, RS rely on solving complex optimization problems to perform power allocation, increasing the time and effort dedicated to signal processing. The proposed adaptive power allocation algorithms reduce the computational complexity and are an attractive solution for practical applications with large-scale systems.

Descrição Arquivo
COMPLETE  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui