$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC | MARC |



Título: E-AUTOMFIS: INTERPRETABLE MODEL FOR TIME SERIES FORECASTING USING ENSEMBLE LEARNING OF FUZZY INFERENCE SYSTEM
Autor: THIAGO MEDEIROS CARVALHO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  MARLEY MARIA BERNARDES REBUZZI VELLASCO - ADVISOR
JOSE FRANCO MACHADO DO AMARAL - CO-ADVISOR

Nº do Conteudo: 53316
Catalogação:  17/06/2021 Liberação: 10/05/2022 Idioma(s):  PORTUGUESE - BRAZIL
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=53316@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=53316@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.53316

Resumo:
By definition, the time series represents the behavior of a variable as a time function. For the series forecasting process, the model must be able to learn the temporal dynamics of the variables in order to obtain consistent future values. However, an accurate time series prediction is a task that goes beyond choosing the most complex (or promising) model that is applicable to the type of problem, and therefore the analysis step is a fundamental procedure to guide the adaptation of a model. Specifically, in multivariate problems, AutoMFIS is a model based on fuzzy logic, developed not only to give accurate forecasts but also to introduce the explainability of results through semantically understandable rules. Even with such promising characteristics, this system has shown practical limitations in problems that involve datasets of high dimensionality. With the increasing demand formethods to deal with large datasets, it should be great that approaches for the automatic synthesis of fuzzy systems could be adapted to cover a new class of forecasting problems. This dissertation proposes an extension of the base model AutoMFIS modeling method for time series forecasting with high dimensionality data, named as e-AutoMFIS. Based on the Ensemble learning theory, this new methodology applies distributed learning to generate fuzzy rules. The main characteristics of the proposed model are described, highlighting the changes in order to improve both the accuracy and the interpretability of the system. The proposed model is also evaluated in different case studies, in which the results are compared in terms of accuracy against the results produced by other methods in the literature. In addition, in each selected problem, the aspect of interpretability is also assessed, which is essential for explainability evaluation.

Descrição Arquivo
COMPLETE  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui