$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas |



Título: SELEÇÃO DE CENÁRIOS COM WEIGHTED SET COVERING
Instituição:  -
Autor(es): ISABELLA FISCHER GUINDANI VIEIRA

Colaborador(es):  RAFAEL MARTINELLI PINTO - Orientador
Número do Conteúdo: 52760
Catalogação:  18/05/2021 Idioma(s):  PORTUGUÊS - BRASIL

Tipo:  TEXTO Subtipo:  APRESENTAÇÃO
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=52760@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=52760@2
Referência DOI:  https://doi.org/10.17771/PUCRio.SeminarPPGEP.52760

Resumo:
As técnicas de agrupamentos aplicadas a um grande número de cenários de incerteza permitem a escolha de um conjunto reduzido, porém, representativo da população de cenários completa. Em outras palavras, uma amostra que contenha uma quantidade menor de elementos a ponto de reduzir suficientemente o volume total de dados e obter ganhos significativos de eficiência no processamento dos dados, mas que consiga, sobretudo, preservar as características do processo estocástico que o originou. Com este intuito, o presente trabalho propõe uma metodologia de seleção de cenários estocásticos utilizando o modelo clássico de Cobertura de Conjuntos. Aplicada na etapa de cálculo de demanda estocástica de ferramentas e serviços para construção de poços marítimos de exploração de petróleo, uma análise de sensibilidade compara os resultados das demandas calculadas com os cenários selecionados pelo Problema de Cobertura de Conjuntos (PCC) e a demanda calculada com o conjunto universo de cenários. O PCC foi solucionado, nesta aplicação, em sua versão clássica da literatura a partir de um algoritmo exato e um heurístico. Os resultados apontam diferenças pouco representativas no resultado final das demandas calculadas com cenários reduzidos e com o total de cenários. A heurística, ainda que seja first solution, apresentou um resultado satisfatório em relação ao ganho de desempenho versus confiabilidade, e indica o potencial do método se aplicado em conjunto com algoritmos de metaheurística e busca local.

Descrição Arquivo
NA ÍNTEGRA  PDF
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui