$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC | MARC |



Título: GUIDED WAVES-BASED STRUCTURAL DAMAGE EVALUATION WITH MACHINE LEARNING
Autor: MATEUS GHEORGHE DE CASTRO RIBEIRO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  HELON VICENTE HULTMANN AYALA - ADVISOR
ALAN CONCI KUBRUSLY - CO-ADVISOR

Nº do Conteudo: 51574
Catalogação:  25/02/2021 Liberação: 22/01/2022 Idioma(s):  ENGLISH - UNITED STATES
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=51574@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=51574@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.51574

Resumo:
Recently ultrasonic guided waves have shown great potential for nondestructive testing and structural health monitoring (SHM) in a damage evaluation scenario. Measurements utilizing elastic waves are particularly useful due to their capability to propagate in different materials such as solid and fluid bounded media, and, also, the ability to cover broad areas. When enough guided waves measurements are available and advanced data-driven techniques such as machine learning can be applied to the problem, the damage evaluation procedure becomes then even more powerful and robust. Based on these circumstances, the present work deals with the application of machine learning models to provide fault evaluation inferences based on ultrasonic guided waves information. Two main case studies are tackled in the mentioned subject. Firstly, a carbon fiber reinforced polymer (CFRP) plate is assessed using open data of Lamb guided wave signals in the detection of dot type defects. Results demonstrated that a baseline dependent approach can obtain excellent results when using system identification feature extraction. Secondly, corrosion-like defects in an aluminium plate are classified according to their severity. The methodology is assisted by a mode separation scheme of SH guided waves signals of pre-acquired data. Results have shown that the adoption of mode separation can in fact improve the machine learning results.

Descrição Arquivo
COMPLETE  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui