$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC | MARC |



Título: PREVENDO A AQUISIÇÃO DE PATÓGENOS RESISTENTES EM UTIS UTILIZANDO TÉCNICAS DE APRENDIZADO DE MÁQUINA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): LEILA FIGUEIREDO DANTAS

Colaborador(es):  SILVIO HAMACHER - Orientador
FERNANDO AUGUSTO BOZZA - Coorientador
Número do Conteúdo: 51384
Catalogação:  01/02/2021 Idioma(s):  INGLÊS - ESTADOS UNIDOS

Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=51384@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=51384@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.51384

Resumo:
As infecções por bactérias Gram-negativas Resistentes aos Carbapenêmicos (CR-GNB) estão entre as maiores preocupações atuais da área da, especialmente em Unidades de Terapia Intensiva (UTI), e podem estar associadas ao aumento do tempo de hospitalização, morbidade, custos e mortalidade. Esta tese tem como objetivo desenvolver uma abordagem abrangente e sistemática aplicando técnicas de aprendizado de máquina para construir modelos para prever a aquisição de CR-GNB em UTIs de hospitais brasileiros. Propusemos modelos de triagem para detectar pacientes que não precisam ser testados e um modelo de risco que estima a probabilidade de pacientes de UTI adquirirem CR-GNB. Aplicamos métodos de seleção de características, técnicas de aprendizado de máquina e estratégias de balanceamento para construir e comparar os modelos. Os critérios de desempenho escolhidos para avaliação foram Negative Predictive Value (NPV) and Matthews Correlation Coefficient (MCC) para o modelo de triagem e Brier score e curvas de calibração para o modelo de risco de aquisição de CR-GNB. A estatística de Friedman e os testes post hoc de Nemenyi foram usados para testar a significância das diferenças entre as técnicas. O método de ganho de informações e a mineração de regras de associação avaliam a importância e a força entre os recursos. Nosso banco de dados reúne dados de pacientes, antibióticos e microbiologia de cinco hospitais brasileiros de 8 de maio de 2017 a 31 de agosto de 2019, envolvendo pacientes hospitalizados em 24 UTIs adultas. As informações do laboratório foram usadas para identificar todos os pacientes com teste positivo ou negativo para CR-GNB, A. baumannii, P. aeruginosa ou Enterobacteriaceae. Há um total de 539 testes positivos e 7.462 negativos, resultando em 3.604 pacientes com pelo menos um exame após 48 horas de hospitalização. Dois modelos de triagem foram propostos ao tomador de decisão do hospital. O modelo da floresta aleatória reduz aproximadamente 39 por cento dos testes desnecessários e prevê corretamente 92 por cento dos positivos. A rede neural evita testes desnecessários em 64 por cento dos casos, mas 24 por cento dos testes positivos são classificados incorretamente. Os resultados mostram que as estratégias de amostragem tradicional, SMOTEBagging e UnderBagging obtiveram melhores resultados. As técnicas lineares como Regressão Logística com regularização apresentam bom desempenho e são mais interpretáveis; elas não são significativamente diferentes dos classificadores mais complexos. Para o modelo de risco de aquisição, o Centroides Encolhidos Mais Próximos é o melhor modelo com um Brier score de 0,152 e um cinto de calibração aceitável. Desenvolvemos uma validação externa a partir de 624 pacientes de dois outros hospitais da mesma rede, encontrando bons valores de Brier score (0,128 and 0,079) em ambos. O uso de antibióticos e procedimentos invasivos, principalmente ventilação mecânica, são os atributos mais importantes e significativos para a colonização ou infecção de CR-GNB. Os modelos preditivos podem ajudar a evitar testes de rastreamento e tratamento inadequado em pacientes de baixo risco. Políticas de controle de infecção podem ser estabelecidas para controlar a propagação dessas bactérias. A identificação de pacientes que não precisam ser testados diminui os custos hospitalares e o tempo de espera do laboratório. Concluímos que nossos modelos apresentam bom desempenho e parecem suficientemente confiáveis para prever um paciente com esses patógenos. Esses modelos preditivos podem ser incluídos no sistema hospitalar. A metodologia proposta pode ser replicada em diferentes ambientes de saúde.

Descrição Arquivo
NA ÍNTEGRA  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui