$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC | MARC |



Título: ATOMICALLY THIN SEMICONDUCTING TRANSITION-METAL DICHALCOGENIDES: FROM SYNTHESIS TO ELECTRO-OPTICAL PROPERTIES
Autor: SYED HAMZA SAFEER GARDEZI
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  VICTOR CAROZO GOIS DE OLIVEIRA - ADVISOR
Nº do Conteudo: 51048
Catalogação:  29/12/2020 Idioma(s):  ENGLISH - UNITED STATES
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=51048@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=51048@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.51048

Resumo:
The aim of this work was to develop reliable and repeatable methods for growing high-quality monolayer MoS2, WS2, and their vertical heterostructure by atmospheric pressure chemical vapor deposition (APCVD) technique. The monolayer of these materials have vital importance in the fabrication of new optical and nanoelectronic devices. Thin and low-cost devices have increased the demand for new synthesis processes. Usually, the synthesis requires temperatures around 800 Celsius degrees, which is an issue for applications mentioned above. In this thesis, we propose a new route using the APCVD technique to grow monolayers of MoS2 at 550 Celsius degrees mediated by sodium as a catalyst. We have produced single crystals and polycrystals by controlling the NaNO3/MoO3 precursor s ratio and growth time. Using first-principles calculations, we find out that sodium is the nucleation site of the growth process. The precursor s ratio is crucial to decrease the energy formation and the synthesis temperature. Firstprinciples calculations and experiments agree with the ideal precursor s rate of 0.3 and with the decrease of the synthesis temperature of 250 Celsius degrees. We investigated the CVD grown sample with X-ray photoelectron spectroscopy, atomic force microscopy, Raman spectroscopy, photoluminescence spectroscopy, and transport experiments. Few layers of TMDs allow us to create new materials and find new physical phenomena. The stacking sequence in few-layer TMDs can significantly impact on their electrical and optical properties.We also synthesized few layers of MoS2 and WS2 via APCVD. Two and three layers of MoS2, WS2, and their vertical heterostructures were characterized by second harmonic generation (SHG). The SHG shows that the layers in bilayers grow with 0 degrees or 60 degrees has different phase stacking. The SHG from 0 degrees stacked bilayer has increased when compared to monolayer, while the generated signal from bilayer with 60 degrees stacking is zero. This behavior of SHG suggests that the two layers of MoS2 or WS2 when stacked at 0 degrees have no inversion symmetry to 3R(AB) phase stacking between the top layer and the bottom layer. While when stacked with 60 degrees has inversion symmetry (Centrosymmetric) and have 2H(AA0) phase stacking. Finally, the devices were fabricated on good quality samples to investigate their electrical performance. The fabricated devices show typical n-type behavior and mobility was estimated by measuring transport curves. The dependence of Raman modes of our heterostructure device with electron doping was also studied. By applying a voltage across our device the A1 mode shows blueshift and a new mode emerges at ~ 410 cm-1, which is attributed to the defects (D) in the crystal.

Descrição Arquivo
COMPLETE  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui