$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: APPLYING FULLY CONVOLUTIONAL ARCHITECTURES FOR THE SEMANTIC SEGMENTATION OF UAV, AIRBORN, AND SATELLITE REMOTE SENSING IMAGERY
Autor: DALIANA LOBO TORRES
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  RAUL QUEIROZ FEITOSA - ADVISOR
JOSE MARCATO JUNIOR - CO-ADVISOR

Nº do Conteudo: 50784
Catalogação:  14/12/2020 Liberação: 31/08/2021 Idioma(s):  ENGLISH - UNITED STATES
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=50784@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=50784@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.50784

Resumo:
The increasing availability of remote sensing data has created new opportunities and challenges for monitoring natural and anthropogenic processes on a global scale. In recent years, deep learning techniques have become state of the art in remote sensing data analysis, mainly due to their ability to learn discriminative attributes from large volumes of data automatically. One of the critical problems in image analysis is the semantic segmentation, also known as pixel labeling. It involves assigning a class to each image site. The so-called fully convolutional networks are specifically designed for this task. Recent years have witnessed numerous proposals for fully convolutional network architectures that have been adapted for the segmentation of Earth observation data. The present work evaluates five fully convolutional network architectures that represent the state of the art in semantic segmentation of remote sensing images. The assessment considers data from different platforms: unmanned aerial vehicles, airplanes, and satellites. Three applications are addressed: segmentation of tree species, segmentation of roofs, and deforestation. The performance of the networks is evaluated experimentally in terms of accuracy and the associated computational load. The study also assesses the benefits of using Conditional Random Fields (CRF) as a post-processing step to improve the accuracy of segmentation maps.

Descrição Arquivo
COMPLETE  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui