$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC | MARC |



Título: ESSAYS ON TWO-STAGE ROBUST MODELS FOR POWER SYSTEMS: MODELING CONTRIBUTIONS AND APPLICATIONS OF THE COLUMN-AND-CONSTRAINT-GENERATION ALGORITHM
Autor: ALEXANDRE VELLOSO PEREIRA RODRIGUES
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  ALEXANDRE STREET DE AGUIAR - ADVISOR
DAVID POZO CAMARA - CO-ADVISOR

Nº do Conteudo: 50661
Catalogação:  07/12/2020 Liberação: 07/12/2020 Idioma(s):  ENGLISH - UNITED STATES
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=50661@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=50661@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.50661

Resumo:
This dissertation is structured as a collection of five papers formatted as chapters. The first four papers provide modeling and methodological contributions in scheduling or investment problems in power systems using the adaptive robust optimization framework and modifications to the column-and-constraint-generation algorithm (CCGA). The first paper addresses the security-constrained short-term scheduling problem where automatic primary response is considered. A two-stage robust model is adopted, resulting in complex mixed-integer linear instances featuring binary variables associated with first- and second-stage decisions. A new tailored CCGA which explores the structure of the problem is devised. The second paper uses deep neural networks for learning the mapping of nodal demands onto generators set point for the first paper s model. Robust-based modeling approaches and the CCGA are used to enforce feasibility for the solution. This method results in important computational gains as compared to results of the first paper. The third paper proposes an adaptive data-driven approach for a two-stage robust unit commitment model, where the polyhedral uncertainty set is characterized directly from data, through the convex hull of a set of previously observed non-dispatchable generation profiles. The resulting problem is suitable for the exact CCGA. The fourth paper proposes an adaptive two-stage distributionally robust transmission expansion model incorporating long- and short-term uncertainties. A novel extended CCGA is devised to tackle distributionally robust subproblems. Finally, under a different and higher-level perspective, the fifth paper investigates the adequacy of systematic inducement prizes for fostering innovations in theoretical and computational aspects for various modern power systems challenges.

Descrição Arquivo
COMPLETE  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui