XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: EXTRACTING AND CONNECTING PLAINTIFF S LEGAL CLAIMS AND JUDICIAL PROVISIONS FROM BRAZILIAN COURT DECISIONS Autor: WILLIAM PAULO DUCCA FERNANDES
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
HELIO CORTES VIEIRA LOPES - ADVISOR
SIMONE DINIZ JUNQUEIRA BARBOSA - CO-ADVISOR
Nº do Conteudo: 50158
Catalogação: 03/11/2020 Liberação: 03/11/2020 Idioma(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=50158@1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=50158@2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.50158
Resumo:
Título: EXTRACTING AND CONNECTING PLAINTIFF S LEGAL CLAIMS AND JUDICIAL PROVISIONS FROM BRAZILIAN COURT DECISIONS Autor: WILLIAM PAULO DUCCA FERNANDES
SIMONE DINIZ JUNQUEIRA BARBOSA - CO-ADVISOR
Nº do Conteudo: 50158
Catalogação: 03/11/2020 Liberação: 03/11/2020 Idioma(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=50158@1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=50158@2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.50158
Resumo:
In this work, we propose a methodology to annotate Court decisions,
create Deep Learning models to extract information, and visualize the aggregated
information extracted from the decisions. We instantiate our methodology
in two systems we have developed. The first one extracts Appellate
Court modifications, a set of legal categories that are commonly modified
by Appellate Courts. The second one (i) extracts plaintiff s legal claims and
each specific provision on legal opinions enacted by lower and Appellate
Courts, and (ii) connects each legal claim with the corresponding judicial
provision. The system presents the results through visualizations. Information
Extraction for legal texts has been previously addressed using different
techniques and languages. Our proposals differ from previous work, since
our corpora are composed of Brazilian lower and Appellate Court decisions.
To automatically extract that information, we use a traditional Machine
Learning approach and a Deep Learning approach, both as alternative solutions
and also as a combined solution. In order to train and evaluate the
systems, we have built Kauane Junior corpus for the first system, and three
corpora for the second system – Kauane Insurance Report, Kauane Insurance
Lower, and Kauane Insurance Upper. We used public data disclosed by
the State Court of Rio de Janeiro to build the corpora. For Kauane Junior,
the best model, which is a Bidirectional Long Short-Term Memory network
combined with Conditional Random Fields (BILSTM-CRF), obtained an
(F)beta=1 score of 94.79 percent. For Kauane Insurance Report, the best model, which is a Bidirectional Long Short-Term Memory network with character embeddings
concatenated to word embeddings combined with Conditional Random
Fields (BILSTM-CE-CRF), obtained an (F)beta=1 score of 67.15 percent. For
Kauane Insurance Lower, the best model, which is a BILSTM-CE-CRF,
obtained an (F)beta=1 score of 89.12 percent. For Kauane Insurance Upper, the best
model, which is a BILSTM-CRF, obtained an (F)beta=1 score of 83.66 percent.
Descrição | Arquivo |
COMPLETE |