$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC | MARC |



Título: QUANTUM-INSPIRED NEURAL ARCHITECTURE SEARCH
Autor: DANIELA DE MATTOS SZWARCMAN
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  MARLEY MARIA BERNARDES REBUZZI VELLASCO - ADVISOR
DANIEL SALLES CHEVITARESE - CO-ADVISOR

Nº do Conteudo: 49066
Catalogação:  13/08/2020 Liberação: 15/07/2021 Idioma(s):  ENGLISH - UNITED STATES
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=49066&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=49066&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.49066

Resumo:
Deep neural networks are powerful and flexible models that have gained the attention of the machine learning community over the last decade. For a variety of tasks, they can even surpass human-level performance. Usually, to reach these excellent results, an expert spends significant time designing the neural architecture, with long trial and error sessions. In this scenario, there is a growing interest in automating this design process. To address the neural architecture search (NAS) problem, authors have presented new methods based on techniques such as reinforcement learning and evolutionary algorithms, but the high computational cost is still an issue for many of them. To reduce this cost, researchers have proposed to restrict the search space, with the help of expert knowledge. Quantum-inspired evolutionary algorithms present promising results regarding faster convergence. Motivated by this idea, we propose Q-NAS: a quantum-inspired algorithm to search for deep networks by assembling substructures. Q-NAS can also evolve some numerical hyperparameters, which is a first step in the direction of complete automation. We ran several experiments with the CIFAR-10 dataset to analyze the details of the algorithm. For many parameter settings, Q-NAS was able to achieve satisfactory results. Our best accuracies on the CIFAR-10 task were 93.85 percent for a residual network and 93.70 percent for a convolutional network, overcoming hand-designed models, and some NAS works. Considering the addition of a simple early-stopping mechanism, the evolution times for these runs were 67 GPU days and 48 GPU days, respectively. Also, we applied Q-NAS to CIFAR-100 without any parameter adjustment, reaching an accuracy of 74.23 percent, which is comparable to a ResNet with 164 layers. Finally, we present a case study with real datasets, where we used Q-NAS to solve the seismic classification task. In less than 8.5 GPU days, Q-NAS generated networks with 12 times fewer weights and higher accuracy than a model specially created for this task.

Descrição Arquivo
COMPLETE  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui