$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC | MARC |



Título: SELF-CONFIGURABLE IOT EMBEDDED AGENTS CONTROLLED BY NEURAL NETWORKS
Autor: NATHALIA MORAES DO NASCIMENTO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  CARLOS JOSE PEREIRA DE LUCENA - ADVISOR
PAULO SERGIO CONCEICAO DE ALENCAR - CO-ADVISOR

Nº do Conteudo: 48008
Catalogação:  12/05/2020 Liberação: 12/05/2019 Idioma(s):  ENGLISH - UNITED STATES
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=48008@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=48008@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.48008

Resumo:
Agent-based Internet of Things (IoT) applications have recently emerged as applications that can involve sensors, wireless devices, machines and software that can exchange data and be accessed remotely. Such applications have been proposed in several domains including health care, smart cities and agriculture. Embodied Agents is a term used to denote intelligent embedded agents, which we use to design agents to the IoT domain. Each agent is provided with a body that has sensors to collect data from the environment and actuators to interact with the environment, and a controller that is usually represented by an artificial neural network. Because reconfigurable behavior is key for autonomous embodied agents, there is a spectrum of approaches to support system reconfigurations. However, there is a need for approaches to handle agents and environment variability, and for a broad spectrum of procedures to investigate the relationship between the body and the controller of an embodied agent, as the interaction between the agent and the environment changes. In addition to the body and controller variability of these agents, such as those variations related to the number and types of sensors as well as the number of layers and types of activation function for the neural network, it is also necessary to deal with the variability of the environment in which these agents are situated. A discussion of the embodied agents should have some formal basis in order to clarify these concepts. Notwithstanding, this thesis presents a reference model for selfcon figurable IoT embodied agents. Based on this reference model, we have created three approaches to design and test self-configurable IoT embodied agents: i) a software framework for the development of embodied agents to the Internet of Things (IoT) applications; ii) an architecture to configure the body and controller of the agents based on environment variants; and iii) a tool for testing embodied agents. To evaluate these approaches, we have conducted diffierent case studies and experiments in difierent application domains.

Descrição Arquivo
COMPLETE  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui