$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC|



Título: DETECTOR DE ASSINATURAS DE GÁS EM LEVANTAMENTOS SÍSMICOS UTILIZANDO LSTM
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): LUIZ FERNANDO TRINDADE SANTOS

Colaborador(es):  MARCELO GATTASS - Orientador
Número do Conteúdo: 47319
Catalogação:  02/04/2020 Idioma(s):  PORTUGUÊS - BRASIL

Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=47319@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=47319@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.47319

Resumo:
Detectar reservatórios de hidrocarbonetos a partir de um levantamento sísmico é uma tarefa complexa, que requer profissionais especializados e muito tempo de trabalho. Por isso, atualmente, existem muitas pesquisas que buscam automatizar essa tarefa utilizando redes neurais profundas. Seguindo o sucesso das redes convolucionais profundas, CNNs, na identificação de objetos em imagens e vídeos, as CNNs tem sido utilizadas como detectores de eventos geológicos nas imagens sísmica. O treinamento de uma rede neural profunda atual, entretanto, requer centenas de milhares de dados rotulados. Se tratarmos os dados sísmicos como imagens, os reservatórios de hidrocarbonetos geralmente constituem uma pequena sub imagem incapaz de fornecer tantas amostras. A metodologia proposta nesta dissertação trata o dado sísmico como um conjunto de traços e a amostra que alimenta a rede neural são trechos de um sinal unidimensional parecido com um sinal de som ou voz. Com essa entrada uma marcação de um reservatório numa sísmica geralmente já fornece o número necessário de amostras rotuladas para o treinamento. Um outro aspecto importante da nossa proposta é a utilização de uma rede neural recorrente. A influencia de um reservatório de hidrocarboneto num traço sísmico se dá não somente no local onde ele se encontra, mas em todo o traço que se segue. Por isso propomos a utilização de uma rede do tipo longa memória de curto prazo (Long Short-Term Memory, LSTM) para caracterizar regiões que apresentem assinaturas de gás em imagens sísmicas. Esta dissertação detalha ainda a implementação da metodologia proposta e os testes feitos nos dados sísmicos públicos Netherlands F3-Block. Os resultados alcançados avaliados pelos índices de sensibilidade, especificidade, acurácia e AUC foram todos excelentes, acima de 95 por cento.

Descrição Arquivo
NA ÍNTEGRA  PDF
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui