$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Formato DC|



Título: INTELLIGENT SYSTEMS APPLIED TO FRAUD ANALYSIS IN THE ELECTRICAL POWER INDUSTRIES
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): JOSE EDUARDO NUNES DA ROCHA

Colaborador(es):  MARLEY MARIA BERNARDES REBUZZI VELLASCO - Orientador
MARCO AURELIO CAVALCANTI PACHECO - Coorientador
Número do Conteúdo: 4707
Catalogação:  25/03/2004 Idioma(s):  PORTUGUESE - BRAZIL

Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4707@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4707@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.4707

Resumo:
This dissertation investigates a new methodology based on intelligent techniques for commercial losses reduction in electrical energy supply. The objective of this work is to present a model of computational intelligence able to identify irregularities in consumption and demand electrical measurements, regarding the non-linearity of the consumers seasonal load curve which is hard to represent by mathematical models. The methodology is based on three stages: clustering, to group consumers of electric energy into similar classes; patterns classification, to discover relationships that explain the irregularities profile and that determine the class for an unknown pattern; and knowledge extraction in form of interpretable fuzzy rules. The resulting model was entitled Electric Energy Consumers Classification System. The work consisted of three parts: a bibliographic research about main methods for clustering and patterns classification; definition and implementation of the Electric Energy Consumers Classification System; and case studies. The bibliographic research of clustering methods resulted in a survey of the main techniques used for this task, which can be divided into hierarchical and non-hierarchical clustering algorithms. The bibliographic research of classification methods provided a survey of the architectures, learning algorithms and rules extraction of the neuro-fuzzy systems. Neuro-fuzzy models were chosen due to their capacity of generating linguistics rules. The Electric Energy Consumers Classification System was defined and implemented in the following way: a clustering module, based on the Fuzzy CMeans (FCM) algorithm; and classification module, based on NEFCLASS and Inverted-NFHB neuro-fuzzy sytems. In the first module, some performance metrics have been used such as the FPI (Fuzziness Performance Index), which estimates the fuzzy level generated by a specific number of clusters; and the MPE (Modified Partition Entropy) that estimates disorder level generated by a specific number of clusters. The dominance criterion of Pareto method was used to validate optimal number of clusters. In the classification module, the peculiarities of each neuro-fuzzy system as well as performance comparison of each model were taken into account. Besides the patterns classification objective, the neuro-Fuzzy systems were able to extract knowledge in form of interpretable fuzzy rules. These rules are expressed by: IF x is A and y is B then the pattern belongs to Z class. The cases studies have considered industrial and commercial consumers of electric energy in low and medium tension. The results obtained in the clustering step were satisfactory, since consumers have been clustered in a natural way by their electrical consumption and demand characteristics. As the proposed objective, the system has generated an optimal low number of clusters in the search space, thus directing the learning step of the neuro-fuzzy systems to a low number of groups with high representation over data. The results obtained with Inverted-NFHB and NEFCLASS models, in the majority of cases, showed to be superior to the best results found by the mathematical methods commonly used. The performance of the Inverted-NFHB and NEFCLASS models concerning to processing time was also very good. The models converged to an optimal classification solution in a processing time inferior to a minute. The main objective of this work, that is the non- technical power losses reduction, was achieved by the assertiveness increases in the identification of the cases with measuring irregularities. This fact made possible some reduction in wasting with workers and effectively improved the billing.

Descrição Arquivo
COVER, DEDICATION, THANKS, RESUMO, ABSTRACT, SUMARY, LISTS, EPIGRAPH  PDF  
CHAPTER 1  PDF  
CHAPTER 2  PDF  
CHAPTER 3  PDF  
CHAPTER 4  PDF  
CHAPTER 5  PDF  
CHAPTER 6  PDF  
REFERENCES AND APPENDICES  PDF  
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui