$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Formato DC |



Título: ALGORITHMS FOR ASSISTED DIAGNOSIS OF SOLITARY LUNG NODULES IN COMPUTERIZED TOMOGRAPHY IMAGES
Autor: ARISTOFANES CORREA SILVA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  MARCELO GATTASS - ADVISOR
PAULO CEZAR PINTO CARVALHO - CO-ADVISOR

Nº do Conteudo: 4516
Catalogação:  19/02/2004 Idioma(s):  PORTUGUESE - BRAZIL
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4516@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4516@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.4516

Resumo:
The present work seeks to develop a computational tool to suggest about the malignancy or benignity of Solitary Lung Nodules by the analysis of texture and geometry measures obtained from computadorized tomography images. Four groups of methods are proposed with the purpose of suggesting the diagnosis for such nodule. The groups of methods are divided according to their common characteristics. Group I includes methods based on texture adapted for 3D, such as the histogram, the Spatial Gray Level Dependence Method, the Gray Level Difference Method and Gray Level Run Length Matrices. Group II also deals with the texture of nodules, but uses four statistical functions denominated semivariogram, semimadogram, covariogram and correlogram. Group III describes measures based only on the geometry of the nodule, such as convexity, sphericity, and measures based on the curvature. Finally, Group IV analyzes the Gini coeficient and nodule skeleton methods, which take into account both the nodule s geometry and its texture. A sample with 36 nodules, 29 benign and 7 malignant, was analyzed and the preliminary results of this approach are very promising in characterizing lung nodules. Most groups of proposed methods have the area under the ROC curve value above 0.800, using Fisher s Linear Discriminant Analysis and Multilayer Perceptron Neural Networks. This means that the proposed methods have great potential in the discrimination and classification of Solitary Lung Nodules.

Descrição Arquivo
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS  PDF  
CHAPTER 1  PDF  
CHAPTER 2  PDF  
CHAPTER 3  PDF  
CHAPTER 4  PDF  
CHAPTER 5  PDF  
REFERENCES AND ANNEX  PDF  
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui