$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC|



Título: ALGORITMOS PARA REGRESSÃO POR MÍNIMOS QUADRADOS PARCIAIS
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): RAUL PIERRE RENTERIA

Colaborador(es):  RUY LUIZ MILIDIU - Orientador
Número do Conteúdo: 4362
Catalogação:  08/01/2004 Idioma(s):  PORTUGUÊS - BRASIL

Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4362@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4362@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.4362

Resumo:
Muitos problemas da área de aprendizagem automática tem por objetivo modelar a complexa relação existente num sisitema , entre variáveis de entrada X e de saída Y na ausência de um modelo teórico. A regressão por mínimos quadrados parciais PLS ( Partial Least Squares) constitui um método linear para resolução deste tipo de problema , voltado para o caso de um grande número de variáveis de entrada quando comparado com número de amostras. Nesta tese , apresentamos uma variante do algoritmo clássico PLS para o tratamento de grandes conjuntos de dados , mantendo um bom poder preditivo. Dentre os principais resultados destacamos um versão paralela PPLS (Parallel PLS ) exata para o caso de apenas um variável de saída e um versão rápida e aproximada DPLS (DIRECT PLS) para o caso de mais de uma variável de saída. Por outro lado ,apresentamos também variantes para o aumento da qualidade de predição graças à formulação não linear. São elas o LPLS ( Lifted PLS ), algoritmo para o caso de apenas uma variável de saída, baseado na teoria de funções de núcleo ( kernel functions ), uma formulação kernel para o DPLS e um algoritmo multi-kernel MKPLS capaz de uma modelagemmais compacta e maior poder preditivo, graças ao uso de vários núcleos na geração do modelo.

Descrição Arquivo
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS  PDF
CAPÍTULO 1  PDF
CAPÍTULO 2  PDF
CAPÍTULO 3  PDF
CAPÍTULO 4  PDF
CAPÍTULO 5  PDF
CAPÍTULO 6  PDF
REFERÊNCIAS BIBLIOGRÁFICAS  PDF
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui