$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Formato DC|



Título: ASSISTÊNCIA INTELIGENTE À ORIENTAÇÃO DO PROCESSO DE DESCOBERTA DE CONHECIMENTO EM BASES DE DADOS
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): RONALDO RIBEIRO GOLDSCHMIDT

Colaborador(es):  EMMANUEL PISECES LOPES PASSOS - Orientador
MARLEY MARIA BERNARDES REBUZZI VELLASCO - Coorientador
Número do Conteúdo: 4309
Catalogação:  15/12/2003 Idioma(s):  PORTUGUÊS - BRASIL

Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4309@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4309@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.4309

Resumo:
A notória complexidade inerente ao processo de KDD - Descoberta de Conhecimento em Bases de Dados - decorre essencialmente de aspectos relacionados ao controle e à condução deste processo (Fayyad et al., 1996b; Hellerstein et al., 1999). De uma maneira geral, estes aspectos envolvem dificuldades em perceber inúmeros fatos cuja origem e os níveis de detalhe são os mais diversos e difusos, em interpretar adequadamente estes fatos, em conjugar dinamicamente tais interpretações e em decidir que ações devem ser realizadas de forma a procurar obter bons resultados. Como identificar precisamente os objetivos do processo, como escolher dentre os inúmeros algoritmos de mineração e de pré-processamento de dados existentes e, sobretudo, como utilizar adequadamente os algoritmos escolhidos em cada situação são alguns exemplos das complexas e recorrentes questões na condução de processos de KDD. Cabe ao analista humano a árdua tarefa de orientar a execução de processos de KDD. Para tanto, diante de cada cenário, o homem utiliza sua experiência anterior, seus conhecimentos e sua intuição para interpretar e combinar os fatos de forma a decidir qual a estratégia a ser adotada (Fayyad et al., 1996a, b; Wirth et al., 1998). Embora reconhecidamente úteis e desejáveis, são poucas as alternativas computacionais existentes voltadas a auxiliar o homem na condução do processo de KDD (Engels, 1996; Amant e Cohen, 1997; Livingston, 2001; Bernstein et al., 2002; Brazdil et al., 2003). Aliado ao exposto acima, a demanda por aplicações de KDD em diversas áreas vem crescendo de forma muito acentuada nos últimos anos (Buchanan, 2000). É muito comum não existirem profissionais com experiência em KDD disponíveis para atender a esta crescente demanda (Piatetsky-Shapiro, 1999). Neste contexto, a criação de ferramentas inteligentes que auxiliem o homem no controle do processo de KDD se mostra ainda mais oportuna (Brachman e Anand, 1996; Mitchell, 1997). Assim sendo, esta tese teve como objetivos pesquisar, propor, desenvolver e avaliar uma Máquina de Assistência Inteligente à Orientação do Processo de KDD que possa ser utilizada, fundamentalmente, como instrumento didático voltado à formação de profissionais especializados na área da Descoberta de Conhecimento em Bases de Dados. A máquina proposta foi formalizada com base na Teoria do Planejamento para Resolução de Problemas (Russell e Norvig, 1995) da Inteligência Artificial e implementada a partir da integração de funções de assistência utilizadas em diferentes níveis de controle do processo de KDD: Definição de Objetivos, Planejamento de Ações de KDD, Execução dos Planos de Ações de KDD e Aquisição e Formalização do Conhecimento. A Assistência à Definição de Objetivos tem como meta auxiliar o homem na identificação de tarefas de KDD cuja execução seja potencialmente viável em aplicações de KDD. Esta assistência foi inspirada na percepção de um certo tipo de semelhança no nível intensional apresentado entre determinados bancos de dados. Tal percepção auxilia na prospecção do tipo de conhecimento a ser procurado, uma vez que conjuntos de dados com estruturas similares tendem a despertar interesses similares mesmo em aplicações de KDD distintas. Conceitos da Teoria da Equivalência entre Atributos de Bancos de Dados (Larson et al., 1989) viabilizam a utilização de uma estrutura comum na qual qualquer base de dados pode ser representada. Desta forma, bases de dados, ao serem representadas na nova estrutura, podem ser mapeadas em tarefas de KDD, compatíveis com tal estrutura. Conceitos de Espaços Topológicos (Lipschutz, 1979) e recursos de Redes Neurais Artificiais (Haykin, 1999) são utilizados para viabilizar os mapeamentos entre padrões heterogêneos. Uma vez definidos os objetivos em uma aplicação de KDD, decisões sobre como tais objetivos podem ser alcançados se tornam necessárias. O primeiro passo envolve a escolha de qual algoritmo de mineração de dados é o mais apropriado para o problema em questão. A Assistência ao Planejamento de Ações de KDD auxilia o homem nesta escolha. Utiliza, para tanto, uma metodologia de ordenação dos algoritmos de mineração baseada no desempenho prévio destes algoritmos em problemas similares (Soares et al., 2001; Brazdil et al., 2003). Critérios de ordenação de algoritmos baseados em similaridade entre bases de dados nos níveis intensional e extensional foram propostos, descritos e avaliados. A partir da escolha de um ou mais algoritmos de mineração de dados, o passo seguinte requer a escolha de como deverá ser realizado o pré-processamento dos dados. Devido à diversidade de algoritmos de pré-processamento, são muitas as alternativas de combinação entre eles (Bernstein et al., 2002). A Assistência ao Planejamento de Ações de KDD também auxilia o homem na formulação e na escolha do plano ou dos planos de ações de KDD a serem adotados. Utiliza, para tanto, conceitos da Teoria do Planejamento para Resolução de Problemas. Uma vez escolhido um plano de ações de KDD, surge a necessidade de executá-lo. A execução de um plano de ações de KDD compreende a execução, de forma ordenada, dos algoritmos de KDD previstos no plano. A execução de um algoritmo de KDD requer conhecimento sobre ele. A Assistência à Execução dos Planos de Ações de KDD provê orientações específicas sobre algoritmos de KDD. Adicionalmente, esta assistência dispõe de mecanismos que auxiliam, de forma especializada, no processo de execução de algoritmos de KDD e na análise dos resultados obtidos. Alguns destes mecanismos foram descritos e avaliados. A execução da Assistência à Aquisição e Formalização do Conhecimento constitui-se em um requisito operacional ao funcionamento da máquina proposta. Tal assistência tem por objetivo adquirir e disponibilizar os conhecimentos sobre KDD em uma representação e uma organização que viabilizem o processamento das funções de assistência mencionadas anteriormente. Diversos recursos e técnicas de aquisição de conhecimento foram utilizados na concepção desta assistência.

Descrição Arquivo
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS  PDF  
CAPÍTULO 1  PDF  
CAPÍTULO 2  PDF  
CAPÍTULO 3  PDF  
CAPÍTULO 4  PDF  
CAPÍTULO 5  PDF  
CAPÍTULO 6  PDF  
CAPÍTULO 7 E REFERÊNCIAS BIBLIOGRÁFICAS  PDF  
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui