XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: MONITORING OF THE CORUMBÁ-I DAM INSTRUMENTATION BY NEURAL NETWORKS AND THE BOX & JENKINSNULL MODELS Autor: JOSE LUIS CARRASCO GUTIERREZ
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
CELSO ROMANEL - ADVISOR
Nº do Conteudo: 4244
Catalogação: 02/12/2003 Liberação: 02/12/2003 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4244&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4244&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.4244
Resumo:
Título: MONITORING OF THE CORUMBÁ-I DAM INSTRUMENTATION BY NEURAL NETWORKS AND THE BOX & JENKINSNULL MODELS Autor: JOSE LUIS CARRASCO GUTIERREZ
Nº do Conteudo: 4244
Catalogação: 02/12/2003 Liberação: 02/12/2003 Idioma(s): PORTUGUESE - BRAZIL
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4244&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=4244&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.4244
Resumo:
In this work, artificial neural networks and the Box &
Jenkins models (1970) were used for analysis, modeling and
forecasts of water discharges and pressure head development
in the Corumbá-I dam, owned by Furnas Centrais Elétricas,
from the instrumentation data recorded since 1997.
Prediction of the probable values can be a powerful tool
for early detection of abnormal conditions during the dam
operation. The use of statistical methods and artificial
neural network techniques are specially recommend in
situations where a solution with a deterministic approach,
analytical or numerical, is difficult for involving three-
dimensional modeling, complex boundary conditions and
uncertainty with respect to the spatial and temporal
variation of the material properties of the dam and its
foundation. Time series analyses are traditionally carried
out using a statistical approach, such as the Box & Jenkins
models. However, artificial neural networks have become in
the recent years an attractive alternative for time series
problems due to their inherent ability to analyze nonlinear
and non-stationary phenomena. Three applications of time
series analysis, related to the instrumentation data
collected from Corumba-I dam, are presented and discussed
in this thesis: forecast of water discharges through the
foundation near the dam left abutment, prediction of
pressure heads in piezometers installed in the impermeable
central core and the residual soil foundation and, finally,
prediction of the pressure heads that would be read in a
piezometer that, at a given instant of time, stops working
being supposedly damaged. In all these cases, the results
obtained from the Box & Jenkins models as well as the
artificial neural networks are quite satisfactory.
Descrição | Arquivo |
COVER, ACKNOWLEDGEMENTS, RESUMO, ABSTRACT, SUMMARY AND LISTS | |
CHAPTER 1 | |
CHAPTER 2 | |
CHAPTER 3 | |
CHAPTER 4 | |
CHAPTER 5 | |
CHAPTER 6 | |
REFERENCES AND APPENDICES |