$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC|



Título: SEMIDEFINITE PROGRAMMING VIA GENERALIZED PROXIMAL POINT ALGORITHM
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): MARIO HENRIQUE ALVES SOUTO NETO

Colaborador(es):  ALVARO DE LIMA VEIGA FILHO - Orientador
Número do Conteúdo: 40183
Catalogação:  01/07/2019 Idioma(s):  ENGLISH - UNITED STATES

Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=40183@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=40183@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.40183

Resumo:
Many problems of interest can be solved by means of Semidefinite Programming (SDP). The potential applications range from telecommunications, electrical power systems, game theory and many more fields. Additionally, the fact that SDP is a subclass of convex optimization brings a set of theoretical guarantees that makes SDP very appealing. However, among all sub-classes of convex optimization, SDP remains one of the most challenging in practice. State-of-the-art semidefinite programming solvers still do not efficiently solve large scale instances. In this regard, this thesis proposes a novel algorithm for solving SDP problems. The main contribution of this novel algorithm is to achieve a substantial speedup by exploiting the low-rank property inherent to several SDP problems. The convergence of the new methodology is proved by showing that the novel algorithm reduces to a particular case of the Approximated Proximal Point Algorithm. Along with the theoretical contributions, an open source numerical solver, called ProxSDP, is made available with this work. The performance of ProxSDP in comparison to state-of-the-art SDP solvers is evaluated on three case studies.

Descrição Arquivo
COMPLETE  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui