$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Formato DC|



Título: ANNCOM: BIBLIOTECA DE REDES NEURAIS ARTIFICIAIS PARA ALTO DESEMPENHO UTILIZANDO PLACAS DE VÍDEO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): DANIEL SALLES CHEVITARESE

Colaborador(es):  MARLEY MARIA BERNARDES REBUZZI VELLASCO - Orientador
DILZA DE MATTOS SZWARCMAN - Coorientador
Número do Conteúdo: 38359
Catalogação:  24/05/2019 Idioma(s):  PORTUGUÊS - BRASIL

Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=38359@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=38359@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.38359

Resumo:
As Redes Neurais Artificiais têm sido utilizadas com bastante sucesso em problemas de previsão, inferência e classificação de padrões. Por essa razão, já se encontram disponíveis diversas bibliotecas que facilitam a modelagem e o treinamento de redes, tais como o NNtool do Matlab ou o WEKA. Embora essas bibliotecas sejam muito utilizadas, elas possuem limitações quanto à mobilidade, à flexibilidade e ao desempenho. Essa última limitação é devida, principalmente, ao treinamento que pode exigir muito tempo quando existe uma grande quantidade de dados com muitos atributos. O presente trabalho propõe o desenvolvimento de uma biblioteca (ANNCOM) de fácil utilização, flexível, multiplataforma e que utiliza a arquitetura CUDA (Compute Unified Device Architecture) para reduzir os tempos de treinamento das redes. Essa arquitetura é uma forma de GPGPU (General-Purpose computing on Graphics Processing Units) e tem sido utilizada como uma solução em computação paralela na área de alto desempenho, uma vez que a tecnologia utilizada nos processadores atuais está chegando ao limite de velocidade. Adicionalmente, foi criada uma ferramenta gráfica que auxilia o desenvolvimento de soluções aplicando as técnicas de redes neurais de forma fácil e clara usando a biblioteca desenvolvida. Para avaliação de desempenho da ANNCOM, foram realizados seis treinamentos para classificação de clientes de baixa tensão de uma distribuidora de energia elétrica. O treinamento das redes, utilizando a ANNCOM com a tecnologia CUDA, alcançou um desempenho quase 30 vezes maior do que a ANNCOM auxiliada pela MKL (Math Kernel Library) da Intel, também utilizada pelo Matlab.

Descrição Arquivo
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS  PDF
CAPÍTULO 1  PDF
CAPÍTULO 2  PDF
CAPÍTULO 3  PDF
CAPÍTULO 4  PDF
CAPÍTULO 5  PDF  
CAPÍTULO 6  PDF
REFERÊNCIAS BIBLIOGRÁFICAS  PDF
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui