XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: ANNCOM: BIBLIOTECA DE REDES NEURAIS ARTIFICIAIS PARA ALTO DESEMPENHO UTILIZANDO PLACAS DE VÍDEO Autor: DANIEL SALLES CHEVITARESE
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
MARLEY MARIA BERNARDES REBUZZI VELLASCO - ORIENTADOR
DILZA DE MATTOS SZWARCMAN - COORIENTADOR
Nº do Conteudo: 38359
Catalogação: 24/05/2019 Liberação: 24/05/2019 Idioma(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=38359&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=38359&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.38359
Resumo:
Título: ANNCOM: BIBLIOTECA DE REDES NEURAIS ARTIFICIAIS PARA ALTO DESEMPENHO UTILIZANDO PLACAS DE VÍDEO Autor: DANIEL SALLES CHEVITARESE
DILZA DE MATTOS SZWARCMAN - COORIENTADOR
Nº do Conteudo: 38359
Catalogação: 24/05/2019 Liberação: 24/05/2019 Idioma(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=38359&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=38359&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.38359
Resumo:
As Redes Neurais Artificiais têm sido utilizadas com bastante sucesso em problemas de previsão, inferência e classificação de padrões. Por essa razão, já se encontram disponíveis diversas bibliotecas que facilitam a modelagem e o treinamento de redes, tais como o NNtool do Matlab ou o WEKA. Embora essas bibliotecas
sejam muito utilizadas, elas possuem limitações quanto à mobilidade, à flexibilidade e ao desempenho. Essa última limitação é devida, principalmente, ao treinamento que pode exigir muito tempo quando existe uma grande quantidade de dados com muitos atributos. O presente trabalho propõe o desenvolvimento de
uma biblioteca (ANNCOM) de fácil utilização, flexível, multiplataforma e que utiliza a arquitetura CUDA (Compute Unified Device Architecture) para reduzir os tempos de treinamento das redes. Essa arquitetura é uma forma de GPGPU (General-Purpose computing on Graphics Processing Units) e tem sido utilizada
como uma solução em computação paralela na área de alto desempenho, uma vez que a tecnologia utilizada nos processadores atuais está chegando ao limite de velocidade. Adicionalmente, foi criada uma ferramenta gráfica que auxilia o desenvolvimento de soluções aplicando as técnicas de redes neurais de forma fácil e clara usando a biblioteca desenvolvida. Para avaliação de desempenho da ANNCOM, foram realizados seis treinamentos para classificação de clientes de baixa tensão de uma distribuidora de energia elétrica. O treinamento das redes, utilizando a ANNCOM com a tecnologia CUDA, alcançou um desempenho quase 30 vezes maior do que a ANNCOM auxiliada pela MKL (Math Kernel Library) da Intel, também utilizada pelo Matlab.
Descrição | Arquivo |
CAPA, AGRADECIMENTOS, RESUMO, ABSTRACT, SUMÁRIO E LISTAS | |
CAPÍTULO 1 | |
CAPÍTULO 2 | |
CAPÍTULO 3 | |
CAPÍTULO 4 | |
CAPÍTULO 5 | |
CAPÍTULO 6 | |
REFERÊNCIAS BIBLIOGRÁFICAS |