$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: DEEP LEARNING APPLIED TO TEXT CHUNKING
Autor: MIGUEL MENDES DE BRITO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  SERGIO COLCHER - ADVISOR
Nº do Conteudo: 38016
Catalogação:  15/05/2019 Liberação: 16/05/2019 Idioma(s):  PORTUGUESE - BRAZIL
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=38016@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=38016@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.38016

Resumo:
Natural Language Processing is a research field that explores how computers can understand and manipulate natural language texts. Sequence tagging is amongst the most well-known tasks in NLP. Text Chunking is one of the problems that can be approached as a sequence tagging problem. Thus, we classify which words belong to a chunk, where each chunk represents a disjoint group of syntactically correlated words. This type of chunking has important applications in more complex tasks of natural language processing, such as dependency parsing, machine translation, semantic role labeling, clause identification and much more. The goal of this work is to present a deep neural network archtecture for the Portuguese text chunking problem. The corpus used in the experiments is the Bosque, from the Floresta Sintá(c)tica project. Based on recent work in the field, our approach surpass the state-of-the-art for Portuguese by achieving a F(beta)=1 of 90.51, which corresponds to an increase of 2.56 in comparison with the previous work. In addition, in order to attest the chunker effectiveness we use the tags obtained by our system as feature for the depedency parsing task. These features improved the accuracy of the parser by 0.87.

Descrição Arquivo
COMPLETE  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui