$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: GENERALIZED AUTOREGRESSIVE SCORE DRIVEN MODELS APPLIED TO INSURANCE: FORECASTING CLAIM FREQUENCY, CLAIM SEVERITY AND AGGREGATE CLAIMS
Autor: MARIANA AROZO BENICIO DE MELO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  CRISTIANO AUGUSTO COELHO FERNANDES - ADVISOR
EDUARDO FRAGA LIMA DE MELO - CO-ADVISOR

Nº do Conteudo: 37615
Catalogação:  05/04/2019 Liberação: 05/04/2019 Idioma(s):  PORTUGUESE - BRAZIL
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=37615@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=37615@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.37615

Resumo:
The objective of this thesis is to present new alternatives for modeling random variables in the insurance industry, using the framework of the score driven models with time-varying parameters. In the first paper, we propose a dynamic model for the aggregate claims distribution, which corresponds to a random sum of claims severity in a certain period of time. Obtaining the aggregate claims distribution is a classic problem in the Risk Theory and fundamental for premium estimation, measurement of obligations and ruin probability valuation. However, obtaining the analytic expression for this probability distribution is a hard task. In this work, we specify nonGaussian distributions for both the number of claims and for the claims severity, under the GAS framework, and, through the use of the fast Fourier transform, we obtain, numerically, the aggregate claims distribution. The second paper deals with the incorporation of macroeconomic variables on the modeling of relevant variables in the insurance sector, in line with the international requirements for market consistent valuation of insurance liabilities, which means that one should take into account the available information in relevant financial and capital markets, using methodologies and parameters consistent with these markets. We model a bivariate time series (two lines of business) of financial insurance with autoregressive models and use copulas models to consider the dependency structure of the time series conditioned to the fitted models for the marginals. Within this approach, it is possible to simulate the numbers of claims from more than one portfolio, and this result can be used in a consistent valuation of liabilities and of the financial health of an insurer.

Descrição Arquivo
COMPLETE  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui