$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: A NEURAL NETWORK FOR ONLINE PORTFOLIO SELECTION WITH SIDE INFORMATION
Autor: GUILHERME AUGUSTO SCHUTZ
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  RUY LUIZ MILIDIU - ADVISOR
Nº do Conteudo: 36111
Catalogação:  15/01/2019 Liberação: 15/01/2019 Idioma(s):  ENGLISH - UNITED STATES
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=36111@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=36111@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.36111

Resumo:
The financial market is essential in the economy, bringing stability, access to new types of investments, and increasing the ability of companies to access credit. The constant search for reducing the role of human specialists in decision making aims to reduce the risk inherent in the intrinsic emotions of the human being, which the machine does not share. As a consequence, reducing speculative effects in the market, and increasing the precision in the decisions taken. In this paper, we discuss the problem of selecting portfolios online, where a vector of asset allocations is required in each step. The proposed algorithm is the multilayer perceptron with side information - MLPi. This algorithm uses neural networks to solve the problem when the investor has access to future information on the price of the assets. To evaluate the use of side information in portfolio selection, we empirically tested MLPi in contrast to two algorithms, a baseline and the state-of-the-art. As a baseline, buy-andhold is used. The state-of-the-art is the online moving average mean reversion algorithm proposed by Li and Hoi (2012). To evaluate the use of side information in the algorithm MLPi a benchmark based on a simple optimal solution using the side information is defined, but without considering the accuracy of the future information. For the experiments, we use minute-level information from the Brazilian stock market, traded on the B3 stock exchange. A price predictor is simulated with 7 different accuracy levels for 200 portfolios. The results show that both the benchmark and MLPi outperform the two algorithms selected, for asset accuracy levels greater than 50 percent, and on average, MLPi outperforms the benchmark at all levels of simulated accuracy.

Descrição Arquivo
COMPLETE  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui