XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: MODELOS NEUROEVOLUCIONÁRIOS COM ECHO STATE NETWORKS APLICADOS À IDENTIFICAÇÃO DE SISTEMAS Autor: PAULO ROBERTO MENESES DE PAIVA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
MARLEY MARIA BERNARDES REBUZZI VELLASCO - ORIENTADOR
JOSE FRANCO MACHADO DO AMARAL - COORIENTADOR
Nº do Conteudo: 36071
Catalogação: 11/01/2019 Liberação: 14/01/2019 Idioma(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=36071&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=36071&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.36071
Resumo:
Título: MODELOS NEUROEVOLUCIONÁRIOS COM ECHO STATE NETWORKS APLICADOS À IDENTIFICAÇÃO DE SISTEMAS Autor: PAULO ROBERTO MENESES DE PAIVA
JOSE FRANCO MACHADO DO AMARAL - COORIENTADOR
Nº do Conteudo: 36071
Catalogação: 11/01/2019 Liberação: 14/01/2019 Idioma(s): PORTUGUÊS - BRASIL
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=36071&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=36071&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.36071
Resumo:
Através das técnicas utilizadas em Identificação de Sistemas é possível obter um modelo matemático para um sistema dinâmico somente a partir de dados medidos de suas entradas e saídas. Por possuírem comportamento naturalmente dinâmico e um procedimento de treinamento simples e rápido, o uso de redes neurais do tipo Echo State Networks (ESNs) é vantajoso nesta área. Entretanto, as ESNs possuem hiperparâmetros que devem ser ajustados para que obtenham um bom desempenho em uma dada tarefa, além do fato de que a inicialização aleatória de pesos da camada interna destas redes (reservatório) nem sempre ser a ideal em termos de desempenho. Por teoricamente conseguirem obter boas soluções com poucas avaliações, o AEIQ-R (Algoritmo Evolutivo com Inspiração Quântica e Representação Real) e a estratégia evolucionária com adaptação da matriz de covariâncias (CMA-ES) representam alternativas de algoritmos evolutivos que permitem lidar de maneira eficiente com a otimização de hiperparâmetros e/ou pesos desta rede. Sendo assim, este trabalho propõe um modelo neuroevolucionário que define automaticamente uma ESN para aplicações de Identificação de Sistemas. O modelo inicialmente foca na otimização dos hiperparâmetros da ESN utilizando o AEIQ-R ou o CMA-ES, e, num segundo momento, seleciona o reservatório mais adequado para esta rede, o que pode ser feito através de uma segunda otimização focada no ajuste de alguns pesos do reservatório ou por uma escolha simples baseando-se em redes com reservatórios aleatórios. O método proposto foi aplicado a 9 problemas benchmark da área de Identificação de Sistemas, apresentando bons resultados quando comparados com modelos tradicionais.
Descrição | Arquivo |
NA ÍNTEGRA |