$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: MODELOS NEUROEVOLUCIONÁRIOS COM ECHO STATE NETWORKS APLICADOS À IDENTIFICAÇÃO DE SISTEMAS
Autor: PAULO ROBERTO MENESES DE PAIVA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  MARLEY MARIA BERNARDES REBUZZI VELLASCO - ORIENTADOR
JOSE FRANCO MACHADO DO AMARAL - COORIENTADOR

Nº do Conteudo: 36071
Catalogação:  11/01/2019 Liberação: 14/01/2019 Idioma(s):  PORTUGUÊS - BRASIL
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=36071&idi=1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=36071&idi=2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.36071

Resumo:
Através das técnicas utilizadas em Identificação de Sistemas é possível obter um modelo matemático para um sistema dinâmico somente a partir de dados medidos de suas entradas e saídas. Por possuírem comportamento naturalmente dinâmico e um procedimento de treinamento simples e rápido, o uso de redes neurais do tipo Echo State Networks (ESNs) é vantajoso nesta área. Entretanto, as ESNs possuem hiperparâmetros que devem ser ajustados para que obtenham um bom desempenho em uma dada tarefa, além do fato de que a inicialização aleatória de pesos da camada interna destas redes (reservatório) nem sempre ser a ideal em termos de desempenho. Por teoricamente conseguirem obter boas soluções com poucas avaliações, o AEIQ-R (Algoritmo Evolutivo com Inspiração Quântica e Representação Real) e a estratégia evolucionária com adaptação da matriz de covariâncias (CMA-ES) representam alternativas de algoritmos evolutivos que permitem lidar de maneira eficiente com a otimização de hiperparâmetros e/ou pesos desta rede. Sendo assim, este trabalho propõe um modelo neuroevolucionário que define automaticamente uma ESN para aplicações de Identificação de Sistemas. O modelo inicialmente foca na otimização dos hiperparâmetros da ESN utilizando o AEIQ-R ou o CMA-ES, e, num segundo momento, seleciona o reservatório mais adequado para esta rede, o que pode ser feito através de uma segunda otimização focada no ajuste de alguns pesos do reservatório ou por uma escolha simples baseando-se em redes com reservatórios aleatórios. O método proposto foi aplicado a 9 problemas benchmark da área de Identificação de Sistemas, apresentando bons resultados quando comparados com modelos tradicionais.

Descrição Arquivo
NA ÍNTEGRA  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui