$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: HYBRID VERSUS PURE MODELS: AN ANALYSIS OF PREDICTION PERFORMANCE USING BRAZILIAN STREAMFLOW
Autor: ANA PAULA SANTOS DELFINO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  FERNANDO LUIZ CYRINO OLIVEIRA - Orientador
Nº do Conteudo: 35793
Catalogação:  06/12/2018 Idioma(s):  PORTUGUESE - BRAZIL
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35793@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35793@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.35793

Resumo:
The Brazilian electricity sector is strongly dependent on hydropower and the accurate prediction of streamflow series is essential for planning and risk management. Recently, hybrid models, which combine prediction and data preprocessing techniques, have stood out. However, in the literature there is no consensus on the predictive superiority of these hybrid models versus their pure version. This paper aims to contribute to the literature with the evaluation of prediction performance suitability of pure and hybrid models for monthly stationary and non - stationary series of streamflow. For this, models were constructed using Artificial Neural Network and ARIMA forecasting techniques coupled with the Singular Spectrum Analysis (SSA) and Seasonal and Trend decomposition based on Loess (STL) data pre-processing techniques. As a result, this study shows that pure models obtained a better performance for the Belo Monte (stationary series), already hybrid models were the best for the Sobradinho (non-stationary series).

Descrição Arquivo
COMPLETE  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui