INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC



Título: INFLUÊNCIA DE IMPERFEIÇÕES GEOMÉTRICAS INICIAIS NAS RESSONÂNCIAS INTERNAS E VIBRAÇÕES NÃO LINEARES DE CASCAS CILÍNDRICAS ESBELTAS
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): LARA RODRIGUES

Colaborador(es):  PAULO BATISTA GONCALVES - Orientador
FREDERICO MARTINS ALVES DA SILVA - Coorientador
Número do Conteúdo: 35757
Catalogação:  30/11/2018 Idioma(s):  PORTUGUÊS - BRASIL

Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35757@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35757@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.35757

Resumo:
A análise das ressonâncias internas em sistemas estruturais contínuos é uma das principais áreas de pesquisa no campo da dinâmica não linear. A ressonância interna entre dois modos de vibração ocorre quando a proporção de suas frequências naturais é um número inteiro. De particular importância, devido à sua influência na resposta estrutural, é a ressonância interna 1:1, geralmente associada às simetrias do sistema, a ressonância interna 1:2, devida às não linearidades quadráticas e a ressonância 1:3 decorrente de não linearidades cúbicas. A ressonância interna permite a transferência de energia entre os modos de vibração relacionados, levando geralmente a novos fenômenos com profunda influência sobre a estabilidade da resposta dinâmica. As cascas de revolução geralmente exibem ressonâncias internas devido à inerente simetria circunferencial e um denso espectro de frequência em sua faixa de frequências mais baixas. Isso pode levar não apenas a ressonâncias internas do tipo m:n, mas a múltiplas ressonâncias internas. Nesta tese é realizada a análise de múltiplas ressonâncias internas em cascas cilíndricas delgadas, em particular as ressonâncias internas de 1:1:1:1 e 1:1:2:2 são investigadas em detalhes, um tópico pouco explorado na literatura técnica. A investigação de ressonâncias internas em sistemas contínuos geralmente é realizada usando modelos discretos de baixa dimensão. Embora alguns trabalhos anteriores tenham investigado ressonâncias internas do tipo m:n em cascas cilíndricas, muitos resultados não são consistentes, uma vez que os modelos discretos derivados não consideram os acoplamentos modais devido a não linearidades quadráticas e cúbicas. Aqui, usando um procedimento de perturbação, expansões modais consistentes são derivadas para um número arbitrário de modos de interação, levando a modelos de baixa dimensão confiáveis. A precisão desses modelos é corroborada usando o método Karhunen-Loève. Finalmente, é bem sabido que pequenas imperfeições geométricas da ordem da espessura da casca têm uma forte influência na sua resposta não linear. No entanto, sua influência nas ressonâncias internas, instabilidade dinâmica e transferência de energia é desconhecida. Assim, a influência de diferentes tipos de imperfeição modal é devidamente considerada na presente análise. Utilizando os modelos discretos aqui derivados, é apresentada uma análise detalhada das bifurcações, utilizando técnicas de continuação e o critério de estabilidade de Floquet, esclarecendo a importância das ressonâncias internas nas vibrações não lineares e instabilidades de cascas cilíndricas. Os resultados também confirmam que a forma e a magnitude das imperfeições geométricas iniciais têm uma influência profunda nos resultados, permitindo ou impedindo a transferência de energia entre os modos ressonantes considerados.

Descrição Arquivo
NA ÍNTEGRA  PDF
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui