INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC



Título: MACHINE LEARNING METHODS APPLIED TO PREDICTIVE MODELS OF CHURN FOR LIFE INSURANCE
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): THAIS TUYANE DE AZEVEDO

Colaborador(es):  DIOGO ABRY GUILLEN - Orientador
Número do Conteúdo: 35235
Catalogação:  26/09/2018 Idioma(s):  PORTUGUESE - BRAZIL

Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35235@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35235@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.35235

Resumo:
The purpose of this study is to explore the churn problem in life insurance, in the sense of predicting if the client will cancel the product in the next 6 months. Currently, machine learning methods are becoming popular in this type of analysis, turning it into an alternative to the traditional method of modeling the probability of cancellation through logistics regression. In general, one of the challenges found in this type of modelling is that the proportion of clients who cancelled the service is relatively small. For this, the study resorted to balancing techniques to treat the naturally unbalanced base – under-sampling and over-sampling techniques and different combinations of these two were used and compared among each other. The bases were used to train models of Bagging, Random Forest and Boosting, and its results were compared among each other and to the results obtained through the Logistics Regression model. We observed that the modified SMOTE technique to balance the base, applied to the Bagging model, was the combination that presented the best results among the explored combinations.

Descrição Arquivo
COMPLETE  PDF
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui