INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC



Título: REALCE E RECONHECIMENTO DE VOZ CONTÍNUA EM AMBIENTES ADVERSOS
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): CHRISTIAN DAYAN ARCOS GORDILLO

Colaborador(es):  MARLEY MARIA BERNARDES REBUZZI VELLASCO - Orientador
ABRAHAM ALCAIM - Coorientador
Número do Conteúdo: 34153
Catalogação:  13/06/2018 Idioma(s):  PORTUGUÊS - BRASIL

Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=34153@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=34153@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.34153

Resumo:
Esta tese apresenta e examina contribuições inovadoras no front-end dos sistemas de reconhecimento automático de voz (RAV) para o realce e reconhecimento de voz em ambientes adversos. A primeira proposta consiste em aplicar um filtro de mediana sobre a função de distribuição de probabilidade de cada coeficiente cepstral antes de utilizar uma transformação para um domínio invariante às distorções, com o objetivo de adaptar a voz ruidosa ao ambiente limpo de referência através da modificação de histogramas. Fundamentadas nos resultados de estudos psicofísicos do sistema auditivo humano, que utiliza como princípio o fato de que o som que atinge o ouvido é sujeito a um processo chamado Análise de Cena Auditiva (ASA), o qual examina como o sistema auditivo separa as fontes de som que compõem a entrada acústica, três novas abordagens aplicadas independentemente foram propostas para realce e reconhecimento de voz. A primeira aplica a estimativa de uma nova máscara no domínio espectral usando o conceito da transformada de Fourier de tempo curto (STFT). A máscara proposta aplica a técnica Local Binary Pattern (LBP) à relação sinal ruído (SNR) de cada unidade de tempo-frequência (T-F) para estimar uma máscara de vizinhança ideal (INM). Continuando com essa abordagem, propõe-se em seguida nesta tese o mascaramento usando as transformadas wavelet com base nos LBP para realçar os espectros temporais dos coeficientes wavelet nas altas frequências. Finalmente, é proposto um novo método de estimação da máscara INM, utilizando um algoritmo de aprendizagem supervisionado das Deep Neural Networks (DNN) com o objetivo de realizar a classificação de unidades T-F obtidas da saída dos bancos de filtros pertencentes a uma mesma fonte de som (ou predominantemente voz ou predominantemente ruído). O desempenho é comparado com as técnicas de máscara tradicionais IBM e IRM, tanto em termos de qualidade objetiva da voz, como através de taxas de erro de palavra. Os resultados das técnicas propostas evidenciam as melhoras obtidas em ambientes ruidosos, com diferenças significativamente superiores às abordagens convencionais.

Descrição Arquivo
NA ÍNTEGRA  PDF
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui