$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: RESULTS OF AMBROSETTI-PRODI TYPE FOR NON-SELFADJOINT ELLIPTIC OPERATORS
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor: ANDRE ZACCUR UCHOA CAVALCANTI

Colaborador(es):  BOYAN SLAVCHEV SIRAKOV - Orientador
CARLOS TOMEI - Coorientador
Número do Conteúdo: 33600
Catalogação:  13/04/2018 Idioma(s):  ENGLISH - UNITED STATES

Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=33600@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=33600@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.33600

Resumo:
The celebrated Ambrosetti-Prodi theorem studies perturbations of the Dirichlet Laplacian by a nonlinear function jumping over the principal eigenvalue of the operator. Various extensions of this landmark result were obtained for self-adjoint operators, in particular by Berger-Podolak in 1975, who gave a geometrical description of the solution set. In this thesis we show that similar theorems are valid for non self-adjoint operators. We employ techniques based on the maximum principle, which even let us obtain new results in the self-adjoint setting. In particular, we show that the semilinear operator is a fold. As a consequence, we obtain exact count of solutions for these operators even when the perturbation is non-smooth.

Descrição Arquivo
COVER, ACKNOWLEDGEMENTS, ABSTRACT, RESUMO, SUMMARY AND LIST OF FIGURES  PDF
CHAPTER 1  PDF
CHAPTER 2  PDF
CHAPTER 3  PDF
CHAPTER 4  PDF
CHAPTER 5  PDF
CHAPTER 6  PDF
BIBLIOGRAPHY AND APPENDICES  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui