$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC|



Título: UMA NOVA ABORDAGEM PARA GERAÇÃO DE CENÁRIOS DE SÉRIES TEMPORAIS PERIÓDICAS VIA MODELOS NÃO LINEARES
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): VICTOR EDUARDO LEITE DE A DUCA

Colaborador(es):  REINALDO CASTRO SOUZA - Orientador
PEDRO GUILHERME COSTA FERREIRA - Coorientador
Número do Conteúdo: 33375
Catalogação:  23/03/2018 Idioma(s):  PORTUGUÊS - BRASIL

Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=33375@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=33375@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.33375

Resumo:
Os modelos autorregressivos são comumente encontrados dentro do contexto de séries hidrológicas, especificamente em séries de vazões e/ou ENA (Energia Natural Afluente). Muitos destes modelos são de ordem 1, possuem parâmetros constantes ou periódicos e necessitam do requisito de normalidade. Segundo a literatura, séries de vazões anuais podem ser aproximadas para distribuições normais, porém em períodos de tempo curtos como diário, semanal e mensal esta característica não é observada, especialmente pelo problema de assimetria. Devido a isto, uma nova classe de modelo de ordem 1 foi estudada na tentativa de suprir tal problema. O novo modelo mantém estrutura autorregressiva, pode ser aditivo, multiplicativo ou híbrido, onde incorpora propriedades aditivas e multiplicativas conjunta- mente, porém suas marginais assumirão distribuição gama. Além disso, a modelagem parte do pressuposto que os Métodos de Momentos são eficientes para estimação de seus parâmetros. Recentemente esta abordagem, sob a forma híbrida, não demonstrou sucesso para o contexto do despacho hidrotérmico brasileiro. O presente trabalho foca na análise completa do modelo híbrido para as séries do Setor Elétrico Brasileiro, trazendo como novidade a estimação via máxima verossimilhança além dos estudos isolados de modelos aditivos e multiplicativos. Os resultados revelaram uma linha de pesquisa promissora, abrindo um campo de possibilidades para que novas ordens superiores a primeira ou distribuições assimétricas possam ser estudadas partindo deste princípio.

Descrição Arquivo
NA ÍNTEGRA  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui