INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC



Título: MAPEAMENTO DA DISTRIBUIÇÃO POPULACIONAL ATRAVÉS DA DETECÇÃO DE ÁREAS EDIFICADAS EM IMAGENS DE REGIÕES HETEROGÊNEAS DO GOOGLE EARTH USANDO DEEP LEARNING
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): CASSIO FREITAS PEREIRA DE ALMEIDA

Colaborador(es):  HELIO CORTES VIEIRA LOPES - Orientador
Número do Conteúdo: 32969
Catalogação:  08/02/2018 Idioma(s):  PORTUGUÊS - BRASIL

Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=32969@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=32969@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.32969

Resumo:
Informações precisas sobre a distribuição da população são reconhecidamente importantes. A fonte de informação mais completa sobre a população é o censo, cujos os dados são disponibilizados de forma agregada em setores censitários. Esses setores são unidades operacionais de tamanho e formas irregulares, que dificulta a análise espacial dos dados associados. Assim, a mudança de setores censitários para um conjunto de células regulares com estimativas adequadas facilitaria a análise. Uma metodologia a ser utilizada para essa mudança poderia ser baseada na classificação de imagens de sensoriamento remoto para a identificação de domicílios, que é a base das pesquisas envolvendo a população. A detecção de áreas edificadas é uma tarefa complexa devido a grande variabilidade de características de construção e de imagens. Os métodos usuais são complexos e muito dependentes de especialistas. Os processos automáticos dependem de grandes bases de imagens para treinamento e são sensíveis à variação de qualidade de imagens e características das construções e de ambiente. Nesta tese propomos a utilização de um método automatizado para detecção de edificações em imagens Google Earth que mostrou bons resultados utilizando um conjunto de imagens relativamente pequeno e com grande variabilidade, superando as limitações dos processos existentes. Este resultado foi obtido com uma aplicação prática. Foi construído um conjunto de imagens com anotação de áreas construídas para 12 regiões do Brasil. Estas imagens, além de diferentes na qualidade, apresentam grande variabilidade nas características das edificações e no ambiente geográfico. Uma prova de conceito será feita na utilização da classificação de área construída nos métodos dasimétrico para a estimação de população em gride. Ela mostrou um resultado promissor quando comparado com o método usual, possibilitando a melhoria da qualidade das estimativas.

Descrição Arquivo
NA ÍNTEGRA  PDF
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui