$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC|



Título: THE BOOSTING AT START ALGORITHM AND ITS APPLICATIONS
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): JULIO CESAR DUARTE

Colaborador(es):  RUY LUIZ MILIDIU - Orientador
Número do Conteúdo: 31451
Catalogação:  15/09/2017 Idioma(s):  PORTUGUESE - BRAZIL

Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=31451@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=31451@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.31451

Resumo:
Boosting is a Machine Learning technique that combines several weak classifers with the goal of improving the overall accuracy. In each iteration, the algorithm updates the example weights and builds an additional classifer. A simple voting scheme is used to combine the classifers. The most famous Boosting-based algorithm is AdaBoost. This algorithm increases the weights of the examples that were misclassifed by the previous classifers. Thus, it focuses the additional classifer on the hardest examples. Initially, an uniform weight distribution is assigned to the examples. However, there is no guarantee that this is the best choice for the initial distribution. In this work, we present Boosting at Start (BAS), a new Machine Learning approach based on Boosting. BAS generalizes AdaBoost by allowing the use of an arbitrary initial distribution. We present schemes for the determination of such distribution. We also show how to adapt BAS to Semi-supervised learning schemes. Additionally, we describe the application of BAS in different problems of data and text classifcation, comparing its performance with the original AdaBoost algorithm and some state-of-the-art algorithms for such tasks. The experimental results indicate that a simple modelling using the BAS algorithm generates effective classifers.

Descrição Arquivo
COVER, THANKS, RESUMO, ABSTRACT, SUMMARY, LISTS, EPIGRAPH  PDF
CHAPTER 1  PDF
CHAPTER 2  PDF
CHAPTER 3  PDF
CHAPTER 4  PDF
CHAPTER 5  PDF
CHAPTER 6  PDF
CHAPTER 7  PDF
CHAPTER 8  PDF
REFERENCES  PDF
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui