XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: MULTIPLE CLASSIFIER SYSTEM FOR MOTOR IMAGERY TASK CLASSIFICATION Autor: ALIMED CELECIA RAMOS
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
MARLEY MARIA BERNARDES REBUZZI VELLASCO - ADVISOR
Nº do Conteudo: 30903
Catalogação: 09/08/2017 Liberação: 17/08/2017 Idioma(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30903@1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30903@2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.30903
Resumo:
Título: MULTIPLE CLASSIFIER SYSTEM FOR MOTOR IMAGERY TASK CLASSIFICATION Autor: ALIMED CELECIA RAMOS
Nº do Conteudo: 30903
Catalogação: 09/08/2017 Liberação: 17/08/2017 Idioma(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30903@1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30903@2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.30903
Resumo:
Brain Computer Interfaces (BCIs) are artificial systems that allow the interaction between a person and their environment using the translated brain electrical signals to control any external device. An EEG neurorehabilitation system can combine portability and affordability with good temporal resolution and no health risks to the user. This system can stimulate the brain plasticity, provided that the system offers reliability on the recognition of the motor imagery (MI) tasks performed by the user. Therefore, the aim of this work is the design of a machine learning system that, based on the EEG signal from only C3 and C4 electrodes, can classify MI tasks with high accuracy, robustness to trial and inter-subject signal variations, and reasonable processing time. The proposed machine learning system has four main stages: preprocessing, feature extraction, feature selection, and classification. The preprocessing and feature extraction are implemented by the extraction of statistical, power and phase features of the frequency sub-bands obtained by the Wavelet Packet Decomposition. The feature selection process is effectuated by a Genetic Algorithm and the classifier model is constituted by a Multiple Classifier System composed by different classifiers and combined by a Multilayer Perceptron Neural Network as meta-classifier. The system is tested on six subjects from datasets offered by the BCIs Competitions and compared with benchmark works founded in the literature, outperforming the other methods. In addition, a real BCI system for neurorehabilitation is designed and tested, producing good results as well.
Descrição | Arquivo |
COMPLETE |