$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: CONTRIBUTIONS TO THE ECONOMETRICS OF COUNTERFACTUAL ANALYSIS
Autor: RICARDO PEREIRA MASINI
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  MARCELO CUNHA MEDEIROS - ADVISOR
CARLOS VIANA DE CARVALHO - CO-ADVISOR

Nº do Conteudo: 30485
Catalogação:  10/07/2017 Liberação: 10/07/2017 Idioma(s):  ENGLISH - UNITED STATES
Tipo:  TEXT Subtipo:  THESIS      trabalho premiado
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30485@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30485@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.30485

Resumo:
This thesis is composed of three chapters concerning the econometrics of counterfactual analysis. In the first one, we consider a new, exible and easy-to-implement methodology to estimate causal effects of an intervention on a single treated unit when no control group is readily available, which we called Artificial Counterfactual (ArCo). We propose a two-step approach where in the first stage a counterfactual is estimated from a largedimensional set of variables from a pool of untreated units using shrinkage methods, such as the Least Absolute Shrinkage Operator (LASSO). In the second stage, we estimate the average intervention effect on a vector of variables, which is consistent and asymptotically normal. Moreover, our results are valid uniformly over a wide class of probability laws. As an empirical illustration of the proposed methodology, we evaluate the effects on in ation of an anti tax evasion program. In the second chapter, we investigate the consequences of applying counterfactual analysis when the data are formed by integrated processes of order one. We find that without a cointegration relation (spurious case) the intervention estimator diverges, resulting in the rejection of the hypothesis of no intervention effect regardless of its existence. Whereas, for the case when at least one cointegration relation exists, we have a square root T-consistent estimator for the intervention effect albeit with a non-standard distribution. As a final recommendation we suggest to work in first-differences to avoid spurious results. Finally, in the last chapter we extend the ArCo methodology by considering the estimation of conditional quantile counterfactuals. We derive an asymptotically normal test statistics for the quantile intervention effect including a distributional test. The procedure is then applied in an empirical exercise to investigate the effects on stock returns after a change in corporate governance regime.

Descrição Arquivo
COMPLETE  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui