INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC



Título: UTILIZANDO INFORMAÇÕES DA EXECUÇÃO DO SISTEMA E CONHECIMENTOS DE MANUTENÇÃO PARA AUXILIAR O DIAGNÓSTICO, DETECÇÃO E RECUPERAÇÃO DE FALHAS
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): THIAGO PINHEIRO DE ARAUJO

Colaborador(es):  ARNDT VON STAA - Orientador
Número do Conteúdo: 28702
Catalogação:  16/01/2017 Idioma(s):  INGLÊS - ESTADOS UNIDOS

Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=28702@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=28702@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.28702

Resumo:
Mesmo sistemas de software desenvolvidos com um controle de qualidade rigoroso podem apresentar falhas durante seu ciclo de vida. Quando uma falha é observada no ambiente de produção, mantenedores são responsáveis por produzir o diagnóstico e remover o seu defeito correspondente. No entanto, em um serviço crítico este tempo pode ser muito longo, logo, se for possível, a assinatura da falha deve ser utilizada para gerar um mecanismo de recuperação automático capaz de detectar e tratar futuras ocorrências similares, até que o defeito possa ser removido. Nesta tese, a atividade de recuperação consiste em restaurar o sistema para um estado correto, que permita continuar a execução com segurança, ainda que com limitações em suas funcionalidades. Para serem eficazes, as tarefas de diagnóstico e recuperação requerem informações detalhadas sobre a execução que falhou. Falhas que ocorrem durante a fase de testes em um ambiente controlado podem ser depuradas através da inserção de nova instrumentação e re-execução da rotina que contem o defeito, tornando mais fácil o estudo de comportamentos inesperados. No entanto, falhas que ocorrem no ambiente de produção apresentam informações limitadas à situação específica em que ocorrem, além de serem imprevisíveis. Para mitigar essa adversidade, informações devem ser coletadas sistematicamente com o intuito de detectar, diagnosticar para recuperar e, eventualmente, diagnosticar para remover a circunstância geradora da falha. Além disso, há um balanceamento entre a informação inserida como instrumentação e a performance do sistema: técnicas de logging geralmente apresentam baixo impacto no desempenho, porém não provêm informação suficiente sobre a execução; por outro lado, as técnicas de tracing podem registrar informações precisas e detalhadas, todavia são impraticáveis para um ambiente de produção. Esta tese propõe uma abordagem hibrida para gravação e extração de informações durante a execução do sistema. A solução proposta se baseia no registro de eventos, onde estes são enriquecidos com propriedades contextuais sobre o estado atual da execução no momento em que o evento é gravado. Através deste registro de eventos com informações de contexto, uma técnica de diagnóstico e uma ferramenta foram desenvolvidas para permitir que eventos pudessem ser filtrados com base na perspectiva de interesse do mantenedor. Além disso, também foi desenvolvida uma abordagem que utiliza estes eventos enriquecidos para detectar falhas automaticamente visando recuperação. As soluções propostas foram avaliadas através de medições e estudos conduzidos em sistemas implantados, baseando-se nas falhas que de fato ocorreram enquanto se utilizava o software em um contexto de produção.

Descrição Arquivo
NA ÍNTEGRA  PDF
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui