$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC|



Título: SUPERVISED LEARNING INCREMENTAL FEATURE INDUCTION AND SELECTION
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): EDUARDO NEVES MOTTA

Colaborador(es):  RUY LUIZ MILIDIU - Orientador
Número do Conteúdo: 28688
Catalogação:  13/01/2017 Idioma(s):  PORTUGUESE - BRAZIL

Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=28688@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=28688@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.28688

Resumo:
Non linear feature induction from basic features is a method of generating predictive models with higher precision for classification problems. However, feature induction may rapidly lead to a huge number of features, causing overfitting and models with low predictive power. To prevent this side effect, regularization techniques are employed to obtain a trade-off between a reduced feature set representative of the domain and generalization power. In this work, we describe a supervised machine learning approach that incrementally inducts and selects feature conjunctions derived from base features. This approach integrates decision trees, support vector machines and feature selection using sparse perceptrons in a machine learning framework named IFIS – Incremental Feature Induction and Selection. Using IFIS, we generate regularized non-linear models with high performance using a linear algorithm. We evaluate our system in two natural language processing tasks in two different languages. For the first task, POS tagging, we use two corpora, WSJ corpus for English, and Mac-Morpho for Portuguese. Our results are competitive with the state-of-the-art performance in both, achieving accuracies of 97.14 per cent and 97.13 per cent, respectively. In the second task, Dependency Parsing, we use the CoNLL 2006 Shared Task Portuguese corpus, achieving better results than those reported during that competition and competitive with the state-of-the-art for this task, with UAS score of 92.01 per cent. Applying model regularization using a sparse perceptron, we obtain SVM models 10 times smaller, while maintaining their accuracies. We achieve model reduction by regularization of feature domains, which can reach 99 per cent. Using the regularized model we achieve model physical size shrinking of up to 82 per cent. The prediction time is cut by up to 84 per cent. Domains and models downsizing also allows enhancing feature engineering, through compact domain analysis and incremental inclusion of new features.

Descrição Arquivo
COMPLETE  PDF
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui