$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: RANDOMFIS: A FUZZY CLASSIFICATION SYSTEM FOR HIGH DIMENSIONAL PROBLEMS
Autor: OSCAR HERNAN SAMUDIO LEGARDA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  MARLEY MARIA BERNARDES REBUZZI VELLASCO - ADVISOR
RICARDO TANSCHEIT - CO-ADVISOR

Nº do Conteudo: 28469
Catalogação:  20/12/2016 Liberação: 02/01/2017 Idioma(s):  PORTUGUESE - BRAZIL
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=28469@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=28469@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.28469

Resumo:
Nowadays, much of the accumulated knowledge is stored as data. Among the tools capable of acting as representative models of real systems, Fuzzy Inference Systems are recognized by their ability to provide accurate and at the same time interpretable models. Interpretability is obtained from linguistic rules, which can be extracted from historical databases. These rules allow the end user to understand the relationship between variables in a specific problem. However, such systems experience the curse of dimensionality when handling complex problems, i.e. with a large number of input variables or patterns in the dataset, giving origin to scalability issues. This dissertation presents a new algorithm for automatic generation of fuzzy rules, called RandomFIS, specifically for classification problems, which is able to handle large databases both in terms of number of input variables (attributes) and in terms of patterns (instances). The RandomFIS model makes use of feature selection concepts (Random Subspace) and Bag of Little Bootstrap (BLB), which is a scalable version of Bootstrapping, creating a classifier committee structure. RandomFIS is tested in several benchmark datasets and shows to be a robust model that maintains interpretability and good accuracy even in problems involving large databases.

Descrição Arquivo
COMPLETE  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui