$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: RANDOMFIS: UM SISTEMA DE CLASSIFICAÇÃO FUZZY PARA PROBLEMAS DE ALTA DIMENSIONALIDADE
Autor: OSCAR HERNAN SAMUDIO LEGARDA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  MARLEY MARIA BERNARDES REBUZZI VELLASCO - ORIENTADOR
RICARDO TANSCHEIT - COORIENTADOR

Nº do Conteudo: 28469
Catalogação:  20/12/2016 Liberação: 02/01/2017 Idioma(s):  PORTUGUÊS - BRASIL
Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=28469@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=28469@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.28469

Resumo:
Hoje em dia, grande parte do conhecimento acumulado está armazenada em forma de dados. Dentre as ferramentas capazes de atuar como modelos representativos de sistemas reais, os Sistemas de Inferência Fuzzy têm se destacado pela capacidade de fornecer modelos precisos e, ao mesmo tempo, interpretáveis. A interpretabilidade é obtida a partir de regras linguísticas, que podem ser extraídas de bases de dados bases históricas e que permitem ao usuário compreender a relação entre as variáveis do problema. Entretanto, tais sistemas sofrem com a maldição da dimensionalidade ao lidar com problemas complexos, isto é, com um grande número de variáveis de entrada ou padrões, gerando problemas de escalabilidade. Esta dissertação apresenta um novo algoritmo de geração automática de regras, denominado RandomFIS, especificamente para problemas de classificação, capaz de lidar com grandes bases de dados tanto em termos de número de variáveis de entrada (atributos) quanto em termos de padrões (instâncias). O modelo RandomFIS utiliza os conceitos de seleção de variáveis (Random Subspace) e Bag of Little Bootstrap (BLB), que é uma versão escalável do Bootstrapping, criando uma estrutura de comitê de classificadores. O RandomFIS é avaliado em várias bases benchmark, demostrando ser um modelo robusto que mantém a interpretabilidade e apresenta boa acurácia mesmo em problemas envolvendo grandes bases de dados.

Descrição Arquivo
NA ÍNTEGRA  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui