$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: SINGLE SAMPLE FACE RECOGNITION FROM VIDEO VIA SATCKED SUPERVISED AUTO-ENCODER
Autor: PEDRO JUAN SOTO VEGA
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  RAUL QUEIROZ FEITOSA - ADVISOR
PATRICK NIGRI HAPP - CO-ADVISOR

Nº do Conteudo: 28102
Catalogação:  23/11/2016 Liberação: 15/12/2016 Idioma(s):  PORTUGUESE - BRAZIL
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=28102@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=28102@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.28102

Resumo:
This work proposes and evaluates strategies based on Stacked Supervised Auto-encoders (SSAE) for face representation in video surveillance applications. The study focuses on the identification task with a single sample per person (SSPP) in the gallery. Variations in terms of pose, facial expression, illumination and occlusion are approached in two ways. First, the SSAE extracts features from face images, which are robust to such variations. Second, multiple samples per persons probes (MSPPP) that can be extracted from video sequences are exploited to improve recognition accuracy. The proposed methods were compared upon Honda/UCSD and VIDTIMIT video datasets. Additionally, the influence of the parameters related to SSAE architecture was studied using the Extended Yale B dataset. The experimental results demonstrated that strategies combining SSAE and MSPPP are able to outperform other SSPP methods, such as local binary patterns, in face recognition from video.

Descrição Arquivo
COMPLETE  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui