XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: STRUCTURED LEARNING WITH INCREMENTAL FEATURE INDUCTION AND SELECTION FOR PORTUGUESE DEPENDENCY PARSING Autor: YANELY MILANES BARROSO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
RUY LUIZ MILIDIU - ADVISOR
Nº do Conteudo: 27915
Catalogação: 09/11/2016 Liberação: 29/11/2016 Idioma(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=27915@1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=27915@2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.27915
Resumo:
Título: STRUCTURED LEARNING WITH INCREMENTAL FEATURE INDUCTION AND SELECTION FOR PORTUGUESE DEPENDENCY PARSING Autor: YANELY MILANES BARROSO
Nº do Conteudo: 27915
Catalogação: 09/11/2016 Liberação: 29/11/2016 Idioma(s): ENGLISH - UNITED STATES
Tipo: TEXT Subtipo: THESIS
Natureza: SCHOLARLY PUBLICATION
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=27915@1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=27915@2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.27915
Resumo:
Natural language processing requires solving several tasks of increasing
complexity, which involve learning to associate structures like graphs and
sequences to a given text. For instance, dependency parsing involves learning
of a tree that describes the dependency-based syntactic structure of a
given sentence. A widely used method to improve domain knowledge
representation in this task is to consider combinations of features, called
templates, which are used to encode useful information with nonlinear
pattern. The total number of all possible feature combinations for a given
template grows exponentialy in the number of features and can result in
computational intractability. Also, from an statistical point of view, it can
lead to overfitting. In this scenario, it is required a technique that avoids
overfitting and that reduces the feature set. A very common approach to
solve this task is based on scoring a parse tree, using a linear function
of a defined set of features. It is well known that sparse linear models
simultaneously address the feature selection problem and the estimation
of a linear model, by combining a small subset of available features. In
this case, sparseness helps control overfitting and performs the selection
of the most informative features, which reduces the feature set. Due to
its
exibility, robustness and simplicity, the perceptron algorithm is one of
the most popular linear discriminant methods used to learn such complex
representations. This algorithm can be modified to produce sparse models
and to handle nonlinear features. We propose the incremental learning of
the combination of a sparse linear model with an induction procedure of
non-linear variables in a structured prediction scenario. The sparse linear
model is obtained through a modifications of the perceptron algorithm. The
induction method is the Entropy-Guided Feature Generation. The empirical
evaluation is performed using the Portuguese Dependency Parsing data set
from the CoNLL 2006 Shared Task. The resulting parser attains 92.98 per cent of
accuracy, which is a competitive performance when compared against the
state-of-art systems. On its regularized version, it accomplishes an accuracy
of 92.83 per cent, shows a striking reduction of 96.17 per cent in the number of binary
features and reduces the learning time in almost 90 per cent, when compared to
its non regularized version.
Descrição | Arquivo |
COMPLETE |