$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Formato DC|



Título: UM NOVO MODELO HÍBRIDO PARA PREVISÃO HORÁRIA DE CARGAS ELÉTRICAS NO CURTO PRAZO
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): TOMAS HOSHIBA KAWABATA

Colaborador(es):  REINALDO CASTRO SOUZA - Orientador
Número do Conteúdo: 2773
Catalogação:  25/07/2002 Idioma(s):  PORTUGUÊS - BRASIL

Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=2773@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=2773@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.2773

Resumo:
Quando ocorre algum tipo de falta em uma Linha de Transmissão (LT), sua localização exata é essencial para uma rápida recomposição do Sistema Elétrico. Métodos que utilizam tensão e corrente de apenas um terminal contêm simplificações que podem acarretar erros. Esta dissertação investiga a aplicação de Redes Neurais Artificiais (RNA) na obtenção de uma nova forma de identificar o tipo do curto- circuito e determinar a sua localização, utilizando dados obtidos em somente um terminal. O trabalho consiste de 4 partes principais: estudo bibliográfico da área de Redes Neurais; simulações de faltas para a obtenção de padrões; definição e implementação dos modelos de Redes Neurais para identificação e localização da falta; e estudos de casos. Na fase do estudo bibliográfico sobre RNA, foi verificado que as topologias de redes mais usuais são as Feed Forward, que podem ter uma ou mais camadas de Elementos Processadores (EP), sendo as redes com múltiplas camadas (Multi-Layer) a configuração mais completa. Para treinamento da rede, o algoritmo de aprendizado mais utilizado é o Back Propagation. Como fruto deste estudo bibliográfico é apresentado neste trabalho um resumo sobre RNA. Nas simulações de faltas para obtenção dos padrões de treinamento e teste, foi utilizado um sistema automático que, através da combinação de vários parâmetros do sistema elétrico, gera situações diferentes de falta. Este sistema utiliza como base o programa Alternative Transient Program -ATP. Neste trabalho o sistema elétrico está representado por uma LT de 345 KV, com fontes equivalentes representando um sistema real de Furnas Centrais Elétricas. Todos o sinais de tensão e corrente utilizados são representados por fasores de 60 Hz, obtidos através da Transformada Discreta de Fourier (TDF). Os modelos de RNAs para identificação e localização de falta foram implementados com sub-rotinas de redes neurais do programa MATLAB ver. 6.0, representados por Redes Perceptron Multicamadas (Multi Layer Perceptron), treinadas com algoritmo Back Propagation com taxa de aprendizado adaptativa e o termo momentum fixo. Um modelo único de RNA identifica quais as fases (A, B, C e T) envolvidas, classificando o tipo de falta, que pode ser: Monofásica; Bifásica; Bifásica-Terra ou Trifásica. Para a localização da falta, foram definidas 4 arquiteturas de RNA, uma para cada tipo de falta. A ativação de cada topologia de RNA para localização é definida em função do tipo de falta classificada no modelo de identificação com RNA. Na etapa de estudo de casos testou-se o desempenho de cada modelo de RNA utilizando casos de testes em outras situações de falta, diferentes dos conjuntos de treinamento. A RNA de identificação de falta foi avaliada para situações de faltas envolvendo outras LTs, com diferentes níveis de tensão. Os resultados das 4 RNAs de localização da falta foram comparados com os resultados obtidos utilizando o método tradicional, tanto para os casos simulados quanto para algumas situações reais de falta. A utilização de RNAs para a identificação e a localização de falta mostrouse bastante eficiente para os casos analisados, comprovando a aplicabilidade das redes neurais nesse problema.

Descrição Arquivo
NA ÍNTEGRA  PDF  
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui