$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC|



Título: GPFIS-FORECAST: A GENETIC-FUZZY SYSTEM BASED ON GENETIC PROGRAMMING FOR FORECAST PROBLEMS
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): MARCO ANTONIO DA CUNHA FERREIRA

Colaborador(es):  RICARDO TANSCHEIT - Orientador
MARLEY MARIA BERNARDES REBUZZI VELLASCO - Coorientador
Número do Conteúdo: 26987
Catalogação:  22/07/2016 Idioma(s):  PORTUGUESE - BRAZIL

Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=26987@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=26987@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.26987

Resumo:
Forecasting methods are very important for the development of various activities in everyday society. Several statistical models have been developed, but many assumptions must be made in order to obtain an acceptable response. Nonstatistical models for time series forecasting such as those involving systems Fuzzy Inference Systems (FIS) provide a description of the process through linguistic rules. This dissertation delves into GPFISForecast: a version of GPFIS - Fuzzy Inference System based on Multigene Genetic Programming - for univariate time series forecasting. This model consists of four basic stages: Fuzzification, Inference, Defuzzification and Evaluation. In each of these steps, different configurations will have distinct impacts on the results. This work proposes the improvement of GPFIS-Forecast along two main lines (i) increase the amount of possible configurations and assess their contribution to a better forecasting accuracy and (ii) add further information to the interpretation of results, keeping in mind both accuracy and interpretability. The case studies show that in the case of time series with small tendency, GPFIS-Forecast provides a good accuracy; when tendency is larger and pre-processing becomes necessary, interpretability is affected. The Fuzzy Forecasting Limits introduced here add more information to the result, pointing to possible adjustments to rule bases of models with greater granularity.

Descrição Arquivo
COMPLETE  PDF
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui