$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC|



Título: NOVEL SPARSE SYSTEMS LEAST SQUARES ESTIMATION METHODS
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): ALEXANDRE DE MACEDO TORTURELA

Colaborador(es):  RAIMUNDO SAMPAIO NETO - Orientador
CESAR AUGUSTO MEDINA SOTOMAYOR - Coorientador
Número do Conteúdo: 26712
Catalogação:  29/06/2016 Idioma(s):  PORTUGUESE - BRAZIL

Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=26712@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=26712@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.26712

Resumo:
In this thesis, four methods specifically designed for sparse systems estimation are originally developed and presented, which were called here: Relaxations method, Successive Expansions method, l1-norm Minimization method and Automatic Adjustment of the Regularization Factor method. The four proposed methods are based on the Least Squares (LS) Estimation method and incorporate techniques related to convex optimization and to the theory of compressive sensing. The simulation results show that the proposed methods herein present superior performance than the ordinary LS estimation method and the Recursive Least Squares (RLS) with convex regularization method (l1-RLS), in many cases achieving the same optimal performance presented by the LS Oracle method. Furthermore, the proposed methods demand lower computational cost than the l1-RLS method.

Descrição Arquivo
COMPLETE  PDF
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui