$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
X
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC |



Título: DOMINO TILINGS OF THE TORUS
Autor: FILLIPO DE SOUZA LIMA IMPELLIZIERI
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):  NICOLAU CORCAO SALDANHA - ADVISOR
Nº do Conteudo: 26336
Catalogação:  10/05/2016 Liberação: 10/05/2016 Idioma(s):  ENGLISH - UNITED STATES
Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=26336@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=26336@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.26336

Resumo:
We consider the problem of counting and classifying domino tilings of a quadriculated torus. The counting problem for rectangles was studied by Kasteleyn and we use many of his ideas. Domino tilings of planar regions can be represented by height functions; for a torus given by a lattice L, these functions exhibit arithmetic L-quasiperiodicity. The additive constants determine the flux of the tiling, which can be interpreted as a vector in the dual lattice (2L) asterisk. We give a characterization of the actual flux values, and of how corresponding tilings behave. We also consider domino tilings of the infinite square lattice; tilings of tori can be seen as a particular case of those. We describe the construction and usage of Kasteleyn matrices in the counting problem, and how they can be applied to count tilings with prescribed flux values. Finally, we study the limit distribution of the number of tilings with a given flux value as a uniform scaling dilates the lattice L.

Descrição Arquivo
COMPLETE  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui