$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC|



Título: AUTOMFIS: A FUZZY SYSTEM FOR MULTIVARIATE TIME SERIES FORECAST
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): JULIO RIBEIRO COUTINHO

Colaborador(es):  RICARDO TANSCHEIT - Orientador
MARLEY MARIA BERNARDES REBUZZI VELLASCO - Coorientador
Número do Conteúdo: 26101
Catalogação:  08/04/2016 Idioma(s):  PORTUGUESE - BRAZIL

Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=26101@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=26101@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.26101

Resumo:
A time series is the most commonly used representation for the evolution of a given variable over time. In a time series forecasting problem, a model aims at predicting the series future values, assuming that all information needed to do so is contained in the series past behavior. Since the phenomena described by the time series does not always exist in isolation, it is possible to enhance the model with historical data from other related time series. The structure formed by several different time series occurring in parallel, each featuring the same interval and dimension, is called a multivariate time series. This dissertation proposes a methodology for the generation of a Fuzzy Inference System (FIS) for multivariate time series forecasting from historical data, aiming at good performance in both forecasting accuracy and rule base interpretability – in order to extract knowledge about the relationship between the modeled time series. Several aspects related to the operation and construction of such a FIS are investigated regarding complexity and semantic clarity. The model is evaluated by applying it to multivariate time series obtained from the complete M3 competition database and by comparing it to other methods in terms of accuracy. In addition knowledge extraction possibilities are explored through two case studies built from actual data. Results confirm that AutoMFIS is indeed capable of modeling time series behaviors in a satisfactory way and of extractig meaningful knowldege from the databases.

Descrição Arquivo
COMPLETE  PDF
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui