$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC|



Título: MODELING HYBRID WAVELET INTEGRATED WITH BOOTSTRAP IN PROJECTION TEMPORAL SERIES
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): RICARDO VELA DE BRITTO PEREIRA

Colaborador(es):  REINALDO CASTRO SOUZA - Orientador
Número do Conteúdo: 26070
Catalogação:  31/03/2016 Idioma(s):  PORTUGUESE - BRAZIL

Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=26070@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=26070@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.26070

Resumo:
In time series analysis some authors presume that a single model (an ARIMA for instance) may yield white noise errors. However that assumption can be easily violated, especially in scenarios where unmapped auto dependency structures are present inside the series. With that being said, this thesis proposes a new approach called Hybrid Wavelet Predictor (HWP) which integrates the following techniques: Wavelet Decomposition, ARIMA models, Neural Networks (NN), Combined Prediction, Non-linear mathematical programming and Bootstrap Sampling. In a broad sense, the proposed HWP is able to capture not only the linear auto-dependent structures from ARIMA using linear wavelet combination (where its optimal numerical adjustment is made through non-linear mathematical programming), but also the non-linear structures by using Neural Network. Differently from others hybrid approaches known to date, the hybrid predictions given by HWP model take into account. Statistical tests show that the hybrid approach stated above increased the prediction s effectiveness by a significant amount when compared with four well known processes.

Descrição Arquivo
COMPLETE  PDF
Logo maxwell Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui