XINFORMAÇÕES SOBRE DIREITOS AUTORAIS
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.
A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.
A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.
A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital
Título: USO DE DADOS DAS CARTEIRAS DE INVESTIDORES INSTITUCIONAIS NA PREDIÇÃO DE RETORNOS DE AÇÕES Autor: RAPHAEL ALEXANDER ROTTGEN
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Colaborador(es):
EDUARDO SANY LABER - ORIENTADOR
Nº do Conteudo: 25862
Catalogação: 29/02/2016 Liberação: 02/03/2016 Idioma(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=25862&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=25862&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.25862
Resumo:
Título: USO DE DADOS DAS CARTEIRAS DE INVESTIDORES INSTITUCIONAIS NA PREDIÇÃO DE RETORNOS DE AÇÕES Autor: RAPHAEL ALEXANDER ROTTGEN
Nº do Conteudo: 25862
Catalogação: 29/02/2016 Liberação: 02/03/2016 Idioma(s): INGLÊS - ESTADOS UNIDOS
Tipo: TEXTO Subtipo: TESE
Natureza: PUBLICAÇÃO ACADÊMICA
Nota: Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=25862&idi=1
Referência [en]: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=25862&idi=2
Referência DOI: https://doi.org/10.17771/PUCRio.acad.25862
Resumo:
Texto Dados sobre as carteiras de investidores institucionais em
ações agora estão disponíveis em vários países e portanto podem ser
usados em modelos para prever os futuros retornos de ações.
Recentemente, vários produtos comerciais de investimento foram
lançados que explicitamente usam tal tipo de dados na construção da
carteira de investimentos. O intuito deste estudo é aplicar algoritmos de
aprendizado de máquina em cima de dados das carteiras de ações de
investidores institucionais nos Estados Unidos, a fim de avaliar se tais
dados podem ser usados para prever futuros retornos de ações. Nosso
trabalho mostra que um modelo usando um support vector machine
conseguiu separar ações em três classes de futuro retorno com acurácia
acima da esperada se um modelo aleatório fosse usado.
Descrição | Arquivo |
NA ÍNTEGRA |