$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC|



Título: OTIMIZAÇÃO DE FUNÇÕES NÃO CONVEXAS UTILIZANDO UM ALGORITMO DE ESTIMAÇÃO DE DISTRIBUIÇÃO BASEADO EM CÓPULAS MULTIVARIADAS
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): HAROLD DIAS DE MELLO JUNIOR

Colaborador(es):  MARLEY MARIA BERNARDES REBUZZI VELLASCO - Orientador
ANDRE VARGAS ABS DA CRUZ - Coorientador
Número do Conteúdo: 25614
Catalogação:  12/01/2016 Idioma(s):  PORTUGUÊS - BRASIL

Tipo:  TEXTO Subtipo:  TESE
Natureza:  PUBLICAÇÃO ACADÊMICA
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=25614@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=25614@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.25614

Resumo:
Algoritmos de estimação de distribuição (EDAs – Estimation of Distribution Algorithms) são uma classe de algoritmos evolutivos capazes de extrair e utilizar conhecimento ao longo do processo de busca. O passo mais importante e um gargalo, que estabelece diferenciação entre esses algoritmos, é a estimação da distribuição de probabilidade conjunta das soluções mais promissoras determinadas pela função de avaliação. Recentemente, uma nova abordagem baseada em teoria das cópulas foi desenvolvida. Este trabalho apresenta um algoritmo de estimação baseado em cópulas para problemas de otimização numérica. Este modelo implementa um EDA através da expansão multivariada de cópulas (EDA-MEC – Estimation of Distribution Algorithm based on Multivariate Extension of Copulas) para estimar a distribuição de probabilidade da qual é gerada uma população de indivíduos. O EDA-MEC difere de outros EDAs baseados em cópulas em alguns aspectos: o parâmetro de cópula é estimado de forma dinâmica, através de medidas de dependência; utiliza uma variação da distribuição de probabilidade aprendida para gerar indivíduos que ajudam a evitar a convergência prematura; e utiliza uma heurística para reinicializar a população ao longo da evolução elitista como uma técnica adicional para tentar preservar a diversidade de soluções. Após um conjunto de testes de parâmetros, inclusive das distribuições marginais, este trabalho mostra que estas abordagens melhoram o desempenho global da otimização comparativamente a outros EDAs baseados em cópulas, com a perspectiva promissora de ser um algoritmo competitivo frente a outras heurísticas comprovadamente eficientes, tais como a Estratégia Evolutiva com Adaptação da Matriz de Covariância (CMA-ES - Covariance Matrix Adaptation Evolution Strategy).

Descrição Arquivo
NA ÍNTEGRA  PDF
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui