$$\newcommand{\bra}[1]{\left<#1\right|}\newcommand{\ket}[1]{\left|#1\right>}\newcommand{\bk}[2]{\left<#1\middle|#2\right>}\newcommand{\bke}[3]{\left<#1\middle|#2\middle|#3\right>}$$
INFORMAÇÕES SOBRE DIREITOS AUTORAIS


As obras disponibilizadas nesta Biblioteca Digital foram publicadas sob expressa autorização dos respectivos autores, em conformidade com a Lei 9610/98.

A consulta aos textos, permitida por seus respectivos autores, é livre, bem como a impressão de trechos ou de um exemplar completo exclusivamente para uso próprio. Não são permitidas a impressão e a reprodução de obras completas com qualquer outra finalidade que não o uso próprio de quem imprime.

A reprodução de pequenos trechos, na forma de citações em trabalhos de terceiros que não o próprio autor do texto consultado,é permitida, na medida justificada para a compreeensão da citação e mediante a informação, junto à citação, do nome do autor do texto original, bem como da fonte da pesquisa.

A violação de direitos autorais é passível de sanções civis e penais.
Coleção Digital

Avançada


Estatísticas | Formato DC|



Título: ON THE SOLUTION VARIABILITY REDUCTION OF STOCHASTIC DUAL DYNAMIC PROGRAMMING APPLIED TO ENERGY PLANNING
Instituição: PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO - PUC-RIO
Autor(es): MURILO PEREIRA SOARES

Colaborador(es):  ALEXANDRE STREET DE AGUIAR - Orientador
DAVI MICHEL VALLADAO - Coorientador
Número do Conteúdo: 25355
Catalogação:  28/10/2015 Idioma(s):  ENGLISH - UNITED STATES

Tipo:  TEXT Subtipo:  THESIS
Natureza:  SCHOLARLY PUBLICATION
Nota:  Todos os dados constantes dos documentos são de inteira responsabilidade de seus autores. Os dados utilizados nas descrições dos documentos estão em conformidade com os sistemas da administração da PUC-Rio.
Referência [pt]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=25355@1
Referência [en]:  https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=25355@2
Referência DOI:  https://doi.org/10.17771/PUCRio.acad.25355

Resumo:
In the hydrothermal energy operation planning of Brazil and other hydro-dependent countries, Stochastic Dual Dynamic Programming (SDDP) computes a risk-averse optimal policy that often considers river-inflow autoregressive models. In practical applications, these models induce an undesirable variability of primal (thermal generation) and dual (marginal cost and spot price) solutions, which are highly sensitive to changes in current inflow conditions. In this work, we propose two differing approaches to stabilize SDDP solutions to the energy operation planning problem: the first approach aims at regularizing primal variables by considering an additional penalty on thermal dispatch revisions over time. The second approach indirectly reduces thermal generation and marginal cost variability by disregarding past inflow information in the cost-to-go function and compensating it with an increase in risk aversion. For comparison purposes, we assess solution quality with a set of proposed indexes summarizing each important aspect of a hydrothermal operation planning policy. In conclusion, we show it is possible to obtain high- quality solutions in comparison to current benchmarks and with significantly reduced variability.

Descrição Arquivo
COMPLETE  PDF
Agora você pode usar seu login do SAU no Maxwell!!
Fechar Janela



* Esqueceu a senha:
Senha SAU, clique aqui
Senha Maxwell, clique aqui